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ABSTRACT
We have studiedthe Hoyle-NarlikarC-field cosmology for Kaluza-Klein space-

times with varying cosmological constant )(t , when the universe is filled with
barotropic fluid distribution. To get deterministic solution, we assumed
that 2

1
a

 as considered by as in Chen & Wu (Phys. Rev. D, 41:695, 1990), wheree
a is a scale factor. The various special cases of the model (30) viz. Dust filled
universe  0p , Stif f  fluid universe  p and Radiation dominated
era  p3 are also discussed. The physical aspects for these models are also
studied.

Keywords : C-Field cosmology, Barotropic fluid, Varying cosmological constant )(t .
Introduction :

The model of the universe used for the investigations dealing with physical process
called as a big-bang model. The big-bang model has various problems To overcome the
problems in the big-bang model, alternative theories were proposed from time to time. The
most popular theory was put forward by Bondi&Gold [1] called steady state theory.The
theory fails for not giving any physical justification for continuous creation of matter and the
principle of conservation of matter was iolated in this formalism. To overcome this difficulty,
Hoyle &Narlikar [2] adopt a field theoretical approach by introducing a massless and chargeless
scalar-field C in the Einstein-Hilbert action to account for matter creation. The theory proposed
by Hoyle and Narlikar called asC-field theory which has no big-bang type singularity as in
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Bondi& Gold steady state theory. It is pointed out by Narlikar [3] that matter creation is
accomplished at the expense of negative energy C-field. Narlikar&Padmanabhan [4] have
obtained solution of Einstein field equations admitting radiation with negative energy massless
scalar field C. Chatterjee& Banerjee [5] have extended the study of Hoyle-Narlikar theory
[6, 7, 8] in higher dimensional space times. Like this many other researches Singh &Chaubey
[9], Adhavet al.[10] , Bali &Kumawat [11],Katore [12], Tyagi& Parikh [13], Malekolkalami
[14]  have investigatedC-field cosmological model .

Recently, large numbers of cosmological models have been studied by the inclusion of
cosmological constant   and studied the role of at very early and later stages of the evolution
of the universe. Bergmann [15] has interpreted the cosmological constant  in terms of Higgs
scalar field. In quantum field theory, the cosmological constant is considered as the vacuum
energy density. Dolgov [16, 17] shows that cosmological constant remains constant in the
absence of any interaction with matter and radiation.Bertolami [18] considered cosmological
models with a variable cosmological constant of the form 2~  t . Chen &Wu [19] have also
solved the problem by considering 2~  R , where R  is the scale factor in the Robertson-
Walker space time. Krause &Turner [20] have suggested that universe possess a non-zero
cosmological constant. Recently, the value of cosmological constant 23510934.1  s was
predicted by the cosmological relativistic theory of Carmeli&Kuzmenko [21]. This value of
cosmological constant matches with measurements obtained by High-Z Supernovae Team
and Supernovae Cosmological Project [22-25]. Number of cosmological models in which

decays with time have been investigated by number of authors viz. Singh & Singh [26],
Lui&Wesson [27], Pradhan&Pande [28], Adhavet al.[29], Singh & Kumar [30], Ram &Verma
[31]. Bali &Saraf [34] have investigatedC-field cosmological model for Barotropic fluid
distribution with varying  in FRW space-time.Ghate& Salve [35, 36] have studied some
cosmological model with varying )(t in creation field theory of gravitation.

In this paper, we have investigated Kaluza-Klein space-times for barotropic fluid
distribution with varying cosmological constant )(t  in the creation field theory of gravitation.
The solution of the field equations are obtained by assuming a relation 2

1
a

 (Chen & Wuu
[19]), where a  is a scale factor. This work is organized as follows. In Section 2, the model
and field equations have been presented. The solution of field equations has been discussed in
Section 3. Then in Section 4, the physical aspects of the model have been discussed. In the
last Section 5 concluding remarks have been expressed.
Metric and Field Equations:

We consider the Kaluza-Klein metric in the form
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  22222222 dBdzdydxAdtds  ,  (1)
where A , B  are scale factors which are functions of time t  only and BAg 3 .
The Einstein’s field equations by introduction of C-field is modified by Hoyle and Narlikar[6,
7, 8] with varying   is given by
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Here  is the energy density of massive particles and p is the pressure. iv are co-moving four
velocities which obeys the relation 1j

ivv , 0v , 3,2,1 .The coupling constant between
matter and creation field is greater than zero. It is assumed that creation field C is a function of
time only i.e. )(),( tCtxC  .
The Hoyle-Narlikar field equations (2) for the metric (1) with the help of equations (3) and (4)
given by

(5)
 (6)

(7)
where overhead dot )(. denotes differentiation with respect to time t .
The conservation equation
  08 ;  j

j
i

j
i gGT , (8)

leads to

(9)
usingG = constant,

(10)

Now using  =1and barotropicequation p , equation (7) reduce to
(11)

Equation  (5) leads to
(12)

Solving equations (11) and (12) gives
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(13)
Now to obtained the exact solution  one extra condition needed  we assume a relation
between metric condition given by

(14)
Where n is arbitrary constant and a,b are metric potential.Without loss of generality we assume
n=1 with this eq. (13) gives

(15)
To get deterministic solution in terms of cosmic time t , we assume that 2

1
a

 , where a  is
scale factor. {Chen & Wu (Phys. Rev. D 41:695,1990)} in  equation (15) which leads to

(16)
Substitute  ,   in equation (16) which gives

                             (17)
on solving equation (16) reduces to

(18)
which on simplification gives

                             (19)
(20)

where
           (21)

                             (22)
From equation (14), (19), (20) equation (12) gives

           (23)
3.Solution of the Field Equations:
Merticequation  (1) after using Equation (14), (19) becomes

                       (24)
Using  barotropic condition p  and equation  (14) ,equation (10) leads to
             2
substituting equations (19),(20)and (23) we get

 (25)
To get deterministic value of, we assume 1 . Equation (25) leads to

(26)
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From equation (25), we get
(27)

On simplification equation (27) reduces to
,

            (28)
whichagain leads to

tC  . (29)
We find , which agrees with the value used in source equation. Thus creation field C  is
proportional to time t  and the metric (1) for constraints mentioned above, leads to

(30)
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Conclusion :
1. For dust universe, the scale factor increases with time representing inflationary universe.

The cosmological constant decreases as time increases. The deceleration parameter,
which indicates that the universe is accelerating. Hence the model (30) represents
accelerating universe which matches with the result as obtained by Riesset al. [23]
and Perlmutteret al.[25].

2. For stiff fluid  the scale factor increases with time and decreases as time increases. The
deceleration parameter indicating the universe is in uniform motion.

3. For radiation dominated universe the model behaves exactly same as for dust and stiff
fluid case. The deceleration parameter  which indicates that universe is accelerating.
Hence the model (30) represents accelerating universe which matches with the results
as obtained by Riesset al.[23] and Perlmutteret al.[25].
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Johannes Kepler : An Astronomer Who Changed Vision of
the Universe

Research Paper - Mathematics6

V. B. Raut
Dept. of Mathematics,

Mungsaji Maharaj Mahavidyalaya,
Darwha, Dist. Yavatmal

ABSTRACT
This article is devoted to the life and works of Johannes Kepler (1571-

1630) a German Astronomer, Mathematician and Philosopher. He is
considered as founder of physical astronomy. He is famous for the three Laws
of planetary motion. The first law is that the planets move in ellipses with the
Sun in one focus. Before this law it was assumed the planets move in circles.
Despite his physical weakness, harassment of not getting arrears of salary,
living in poverty and other domestic troubles, this genius astronomer worked
hard and discovered great astronomical facts.

Key words: Johannes Kepler ,Tycho Brahe, Laws of planetary motion.

                                       Johannes Kepler (1571-1630)
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Childhood and Education:
Johannes Kepler was born on 27th December 1571 in longitude 290 7’ , latitude

480 54’ in the city of Weil der Stet , Württemberg , Holy Roman Empire , Germany. His
parents were in good condition but by some reason, the father lost all his slender income.
His father left home when Johannes was five years old and never returned. His mother
was the daughter of an innkeeper. Johannes was employed in inn as a pot-boy between
the ages of nine and twelve. He was sickly lad and suffered violent illness which affected
his life .Childhood small-pox made his vision weak.

At his childhood he developed love for astronomy. At the age of six he observed
the Great Comet of 1577. At the age of nine he observed Lunar Eclipse in 1580. After
completing school education he went to the University of Tubingen, where he graduated
second on the list.

His connection with astronomy was through Copernican theory heard in University
lectures. Johannes had been offered an astronomical lectureship at Graz. Astronomy in
those days was supposed to be a minor science and had little of the special dignity.
Early Work:

Kepler struggled hard in different ways to find law governing orbits of planets
and their distances from the sun. One of his ideas was based on inscribing a large number
of equilateral triangles in a circle. They envelop another circle bearing a definite ratio to
the first. This does for the orbit of two planets (see figure:1 ). Then he tried inscribing and
circumscribing squares, hexagons and examined if the circles thus defined would
correspond to the several planetary orbits. But they would not give any satisfactory
result.
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Kepler thought plane figures will not do with the celestial orbits. He suddenly got
a brilliant idea of inscribing the regular solids (see figure: 2). He represented the earth’s
orbit by a sphere as the norm and measured of all six planets known at that time. Around
earth he circumscribed a dodecahedron and puts another sphere round that which is
approximately the orbit of Mars, round that a tetrahedron which marked the sphere of
the orbit of Jupiter, round that sphere he placed a cube which roughly gives the orbit of
Saturn. On the other hand he inscribed in the sphere of the earth’s orbit an icosahedrons
and inside the sphere determined by that an octahedron which figures he takes to enclose
the sphere of Venus and Mercury respectively.

This discovery was purely fictitious and accidental. First of all, eight planets are
known and secondly their real distances agree only very approximately with hypothesis.
But this idea gave him great delight.

Kepler then worked on to predict the cause of the planet’s motion. He thought of
some propelling force originated from the Sun, like the spokes of a windmill.
Work with Tycho Brah:

When Kepler’s first book was published he get introduced Tycho and Galileo.
Tycho Bray (1546 – 1601) was well-known Danish astronomer. He was at Prague and
he had best planetary observations at that time.

Figure 2: Framework with inscribed and circumscribed 
spheres and other regular solids 

                                                                                                    

Figure 1  : Number of equilateral triangles inscribed in a 
circle 
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Tycho Brahe (1546 – 1601:
Tycho invited Kepler and offered him the post of mathematical assistant.Kepler

accepted it. Kepler says “for observations his sight was dull , for mechanical operations
his hand was weak”. But in mathematical skills he was superior to Tycho. Because of
physical and financial weaknesses, Kepler sought help from Tycho and Tycho helped
him with kindness.

The Emperor Rudolph did a good work in maintaining these two eminent
astronomers Tycho Brahe and Kepler.

    Tycho Brahe (1546 - 1601)
Tycho prepared tables of passages of planets know as Rudolphine tables. It was

main work of his life but he died in 1601 before completing them. On his death-bed he
intrusted the completion of them to Kepler, who undertook their charge. But the Imperial
funds stopped by wars and other difficulties. Kepler could get even his own salary. The
work slowed too much.

Kepler then proceeded to study optics. He gave a Very accurate explanation of
working of human eye. He made many hypothesis, some of them are close to the law of
refraction of light in dense media.
Main Work of Kepler’s  Life:

All the time in his stay at Prague (1600 – 16120) Kepler made a severe study of
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the motion of the planet Mars. In order to find true theory of motion of Mars, he carefully
analysed Tycho’s books of observations. At that time Aristotle had taught that circular
motion was the only perfect and natural motion for heavenly bodies. Afterwords
Hipparchus and others found that planets did not revolve in simple circle but in combinations
of circles. The small circle carried by a bigger one was called an Epicycle. But this failed
to represent speeds of the planets.

Kepler had the accurate planetary observations of Tycho for reference but he
found immense difficulty in obtaining the true position of the planets for long together on
any such theory considered above. He specially studied motion of the planet Mars because
that was sufficiently rapid in its changes for a considerable collection of data. He tried all
manner of circular orbits for the Earth and for the Mars, placing them in all sort of aspects
with respect to the Sun. The aim was to find such an orbitand such a law of speed, for
both the Mars and Earth that a line joining them produced out to the Sun should always
mark correctly the apparent position of Mars as seen from the Earth.

Kepler introduced the idea of an Equant i.e. an arbitrary point about which the
speed might be uniform. Kepler tried all sorts of combinations, the relative position of the
earth and Mars were worked out. He compared it with Tycho’s recorded observations.
But this agreed for a short time and lateron a discrepancy showed itself.

Kepler did this enormous labour and attempts groping in the dark. At length he
got a point that seemed nearly right . But before long the posiyion of the planet as calculated
and recorded by Tycho, differed by eight minutes of arc, or one-eight of a degree. There
was a possible way of thinking that Tycho’s observations might be wrong by this small
amount. But Kepler had known Tycho and he thought Tycho was never wrong eight
minutes in an observation.

Kepler set out the whole way again and said that with those eight minutes he
would yet find out the law of the universe. He gave up the idea of uniform motion and
tried varying circular motion, inversely as its distance from the Sun. To simplify calculation,
he divided the orbit the orbit into triangles and tried if making the triangles equal would do
(see Figure:3).

Surprisingly this worked beautifully! The rate of description of areas is uniform.
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Kepler greatly rejoices. He thought he won the war. But long fresh little errors appeared
and grew in importance. Still a part of truth had been gained.

He fixed the law of speed, which is now known as Kepler’s second law of
planetary motion: ‘the radius vector describes equal areas in equal times’.

Figure 3 : Eccentric circle divided into equal areas. Around the sun S a planet
moves from A to B, From B to C , and so on in equal times.

But what about the shape of the orbits?  Now he tried an oval. He tried several
varieties of ovals. They were better than a circle but still were not right. The geometrical
and mathematical difficulties of calculations were becoming tedious, overwhelming.
Kepler’s six years continuous labour were leading deeper and deeper into complications.
         An accidental ray of light broke upon him in a way. Half the extreme breadth
intercepted between yhe circle and oval broke upon him in a way. Half the extreme
breadth intercepted between the circle and the oval was  429/100000 of the radius, and
he remembered that the “optical inequality” of Mars was also about 429/100000. This
coincidence in his own words, woke him out of sleep and impelled him instantly to try
making the planet  ‘oscillate in the diameter of its epicycle instead of revolve around it ‘.
A long course of day and night of calculations arrived him to hit the motion . Finally he
obtained the curve described by the planet. It is a special kind oval-the ellipse.
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Figure 4 : – Mode of drawing an ellipse. The two pins F are fixed and are the
foci.

This gave birth of his first law of planetary motion:
“Planets move in ellipses with the Sun at one focus”
Kepler’s both the laws agreed with Tycho’s planetary observations.
Financial and Domestic Troubles:
             After conquering Mars Kepler wanted to study Jupiter, Mercury and rest of the
planets. But the death of the patron Emperor in 1612 put an end to all these schemes. At
Prague his salary was not regularly paid and remained always in arrears. He lived in
poverty and his family suffered a lot. One of his sons died of small-pox, and he lost his
wife after eleven days. He could not get any money at Prague. He decided to leave
Prague and move to Linz. He accepted a professorship at Linz. Meanwhile his old mother
was charged with witchcraft. She was sent to prison. Kepler had to hurry from Linz to
interpose. He succeeded in saving her from the torture but she remained in prison for a
year.
Third Law:

In spite of domestic troubles, harassing and unsuccessful attempts to get his rights,
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he still studied his old problem of finding some possible connection between the distances
of the planets from the Sun and their times of revolution i.e. the length of their years.

He found that the cube of the distances of a planet from the Sun is proportional
to the square of the time taken by the planet to revolve round the Sun.
Kepler stated his third law as :

 “the ratio of r3 to T2 for every planet is the same”. His rapture on detecting
the law was unbounded and he breaks out : “ The die is cast, the book is written, to be
read either now or by posterity, I care not which; it may well wait a century for a
reader , as  God has waited six thousand years for an observer “.
Kepler’s Books
1. Astronomia Nova : He published it in 1609. His first two laws appeared in this

book.
2. Hormonics Mundi  : He published it in 1619.He described his ‘third law ‘ in this

book.
3. Epitome Astronomiae  :  Published in 1621. It was a summary of Copernican

theory, a clear and popular exposition of it . But it was banned by the Church
and it gave Kepler no satisfaction.

4. Astronomia Pars Optica : His optical studies appeared in this book. He was
founder of modern optics.He explained the process of vision by refraction within
the eye.

5. Dioptrice :  In this book he described real , virtual, upright and inverted images
and magnification. He explained the working of a telescope .

6. Stereometrica Doliorum :  This book formed the basis of Integral Calculus.
Last Years:

In his last years kepler still worked on Rudolphine tables of Tycho and with small
help from Vienna, completed them. But he could not get financial support to print them.
He applied to the Court though he was sick for applying. They delayed four years with
no relief. Finally any how with a great trouble he had to pay himself for printing it. The
book contains first really accurate tables which navigators ever possessed. This great
publication marks an era in Astronomy.
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            Almost all time in his life Kepler and his family had to live in bitter poverty. Once
more he made determined attempt to get his arrears of salary paid to rescue himself from
poverty. For this purpose he travelled to Prague . He pleaded his own case in the imperial
meeting. But it was all fruitless.

Exhausted by the journey, weakened by over-study, and disheartened by the
failure to get arrears of salary, he caught a fever. He died on 15th November, 1630 at the
age of 59, at Regensburg and was buried there. His burial site was lost after the Swedish
army destroyed the Churchyard and not even a single stone aroused of his memory.

Brewster says of him :-  “Ardent, restless, burning to distinguish himself by
discovery, he attempted everything ; and once having obtained a glimpse of a clue , no
labour was too hard in following or verifying it. A few of his attempts succeeded -  a
multitude failed. Those which failed seem to us now fanciful, those which succeeded
appear to us sublime. But his methods were the same”.
            A life of such a labour, crowned by three brilliant discoveries, the world owes to
the harshly treated German genius , Johannes Kepler.

1) James R. Newman  :  The World of Mathematics , Volume-1 .Simon and Schuster,
New York .

2) Max Casper  :  Kepler,   Doer Publications.
3) Robert S. Westman  :  Johannes Kepler : Short Biography, Encyclopedia

Britannica.
4) http://en.wikipedia.org/wiki/Johannes_Kepler.
5) http://www-history.mcs.st-and.ac.uk/Printonly/Kepler.html.
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We have examined tilted cosmological models by using conformally flat space-time with

wet dark fluid in Lyra geometry. In order to solve the field equations we have consid-
ered a power law. In this paper we have discussed tilted universe with time-dependent

displacement field vector, heat conduction vectors and also discussed big rip singularity.

Some physical and geometrical properties are also investigated. We have also extended
our work to investigate the consistency of the derived model with observational parame-

ter from the point of astrophysical phenomenon such as look-back time-redshift, proper

distance, luminosity distance, angular-diameter distance and distance modulus.

Keywords: Tilted models; conformally flat space-time; wet dark fluid; Lyra geometry.

1. Introduction

In a tilted cosmology the tilt can become extreme in a limited time as measured

along the fluid congruence, with the result that the group orbits become time-

like. This means that the models are no longer spatially homogeneous. A spatially

homogeneous universe is said to be non-comoving if the fluid velocity vector is

not orthogonal to the group orbits, otherwise the model is said to be co-moving.

Dynamical tilted universe is explored by King and Ellis;1 Ellis and King;2 Goliath

and Ellis.3 Larena4 has studied cosmological matter fluid in tilted universe and

discussed the effect of peculiar velocity. Herrera et al.5 constructed the Szekeres

¶Corresponding author.
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space-time tilted model. Dunn and Tupper6 analyzed the physical properties of

tilted universe for perfect fluid.

Herrera et al.5 derived tilted observer for thermodynamics and hydrodynamics

properties. Sharif and Tahir7 constructed the physical properties of tilted model

for different space-time. Sahu et al.8 and Sahu and Kumar9 discussed spatially

homogeneous universe for various space-time in different gravitation theory and

geometry. Dagwal and Pawar;10,11 Pawar and Dagwal12,13 analyzed tilted dark en-

ergy models, tilted two fluid models and tilted scalar field for solving cosmological

problem. Sandin14 and Verma15 (2009) examined the effect of two fluid models on

tilted universe and solved the exact solutions.

The importance of wet dark fluid is derived from the fact that it is a good

calculation for various fluids, including water, in which the internal attraction of

the molecules makes negative pressure possible. One of the virtues of this model is

that the square of the sound speed, c2s which depends on ∂p/∂ρ, can be positive,

which still gives rise to the cosmic acceleration in the current epoch.

Homogeneous and isotropic wet dark fluid model is analyzed by Holman and

Naidu.16 Higher-dimensional space-time with wet dark fluid in modified theory of

gravity has been expressed by Sahoo and Mishra.17 Chaubey18 and Singh and

Chaubey19 investigated physical and geometrical properties of wet dark fluid.

Samanta et al.20 considered negative pressure with wet dark fluid. Physical im-

plications of wet dark fluid in biometric theory of gravitation have been studied by

Jain et al.21

We have inspired to use the wet dark fluid (WDF) as a model for dark energy

which stems from an experiential equation of state investigated by Hayward22 to

treat water and aqueous solution.

The equation of state for Wet Dark Fluid is

pWDF = γ(ρWDF − ρ∗)

and motivated by the fact that it is good approximation for various fluids, including

water, in which the internal attraction of the molecules makes negative pressure

possible.

We use the energy conservation equation

ρ̇WDF + 3H(pWDF + ρWDF) = 0

From equation of state and using 3H = v̇
v in the above equation, we get

ρWDF =
γ

1 + γ
ρ+

s

v(1+γ)

where s is the constant of integration and v is the volume expansion.

Wet dark fluid naturally comprises two components: a piece that behaves as a

cosmological constant as well as a standard fluid with an equation of state p = γρ.

We can show that if we take s > 0, this fluid will not violate the strong energy
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condition p+ ρ ≥ 0

pWDF + ρWDF = (1 + γ)ρWDF − γρ∗ = (1 + γ)
s

v(1+γ)
≥ 0.

Lyra23 has expressed a modification of Riemannian geometry by presenting a

gauge function into the structure less manifold, which bears a close resemblance

to Weyl’s geometry. A static universe has been obtained by Sen.24 Thermody-

namic equilibrium property in Lyra’s geometry has been calculated by Karade and

Borikar.25 Sen and Dunn26 explored Einstein field equations constructed on Lyra’s

manifold. Halford27 considered the vector field φi in Lyra’s manifold which plays a

parallel role of cosmological constant Λ in general theory of relativity. Cosmological

solution in Lyra’s geometry has been constructed by Bhamra.28 Vacuum cosmolog-

ical universe in Lyra’s geometry has evaluated by Beesham.29 Mohanty et al.30

obtained non-existence cosmological model for Perfect Fluid in Lyra’s geometry.

Pawar et al.;31 Dagwal and Pawar32 developed tilted universe in Brans–Dicke the-

ory of gravitation and general relativity, respectively. The behaviors of dark energy,

mesonic scalar field, magnetic field and anisotropy parameter in gravitation theo-

ries are developed by Aktaş et al.33,34 Yousaf53,54 investigated different tilted and

non-tilted model in modified gravity. Non-comoving models with wet dark fluid in

scalar theory of gravitation are formulated by Sahu et al.35 Aktaş,36 Aygün et al.,37

Yılmaz et al.38 and Dagwal and Pawar39,40 have studied Lyra geometry and other

alternative theories.

LRS Bianchi type-I metric is the spatially homogeneous and anisotropic flat

universe. FRW universe has the equivalent scale factor for each of the three spatial

directions where as LRS Bianchi type-I metric has dissimilar scale factors. The

singularity of LRS Bianchi type-I metric behaves like Kasnser metric. It has been

studied that a metric filled with matter, the early anisotropy in LRS Bianchi type-

I metric speedily expires away and evolves into a FRW universe. It has simple

mathematical form and motivating because of the capability to clarify the cosmic

evolution of the early universe. Due to its prominence, several authors have explored

LRS Bianchi type-I metric from different aspects.

Abdussattar and Prajapati41 investigated LRS Bianchi type-I with modified

Chaplygin gas equation of state. Bishi et al.42 developed LRS Bianchi type-I in

f(R, T ) gravity. Solanke et al.43 presented LRS Bianchi type-I metric in the presence

dark energy.

Motivated by the above work, we have examined tilted cosmological models by

using conformally flat space-time with wet dark fluid in Lyra geometry. In this

paper, we have discussed tilted universe with time-dependent displacement field

vector, heat conduction vectors and also discussed big rip singularity. We have

investigated distances in cosmology. This paper is organized as follows. Section 2

deals with metric and field equations, Sec. 3 deals with physical and geometrical

property, Sec. 4 deals with distances in cosmology, Sec. 4.1 deals with look-back

time-redshift, Sec. 4.2 deals with proper distance, Sec. 4.3 deals with luminosity

distance, Sec. 4.4 deals with angular-diameter distance, Sec. 4.5 deals with distance
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modulus, Sec. 5 deals with results and discussion. The conclusion was provided in

Sec. 6.

2. Metric and Field Equations

We consider the metric in the form

ds2 = −dt2 + e2α dx2 + e2β(dy2 + dz2) (1)

where α and β are the functions of t alone.

The field equations of wet dark fluid in Lyra geometry are given by

Rji −
1

2
gjiR+

3

2
φiφ

j − 3

4
gjiφkφ

k = T ji , (2)

where φ is a time-dependent displacement field vector, defined by

φi = (0, 0, 0, γ(t)). (3)

The energy–momentum tensor given by

T ji = (pWDF + ρWDF)uiu
j + pWDFg

j
i + qiu

j + uiq
j , (4)

together with

giju
iuj = −1, qiq

i > 0, qiu
j = 0, (5)

where pWDF is the pressure and ρWDF is the energy density of wet dark fluid, qi is

the heat conduction vector orthogonal to ui. The fluid vector ui has the components(
sinhλ
eα , 0, 0, coshλ

)
satisfying Eq. (5) and λ is the tilt angle.

The field equation (2) for metric (1) reduces to

2β44 + 3β2
4 +

3

4
γ2 = (ρWDF + pWDF) sinh2 λ+ pWDF + 2q1

sinhλ

eα
, (6)

α44 + β44 + α4β4 + α2
4 + β2

4 +
3

4
γ2 = pWDF, (7)

β2
4 + 2α4β4 −

3

4
γ2 = −(ρWDF + pWDF) cosh2 λ+ pWDF − 2q1

sinhλ

eα
, (8)

(ρWDF + pWDF)eα sinhλ coshλ+ q1 coshλ+ q1
sinh2 λ

coshλ
= 0. (9)

Here the index 4 after a field variable denotes the differentiation with respect to

cosmic time t.

The set (6)–(9) are four field equations containing seven unknown α, β, γ, pWDF,

ρWDF, λ, q1. To obtain a determinate solution we have to consider three additional

constraints.

First, we consider that the space-time is conformally flat, which gives

C2323 =
e4β

3
[α44 + α2

4 − β44 − β4α4]. (10)
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Second, the shear scalar is proportional to the expansion scalar α and β (Ref. 20)

α = mβ, (11)

where m is constant.

The motive behind considering this condition is described with reference to

Thorne,44 the observations of the velocity-red-shift relation for extragalactic sources

suggest that Hubble expansion of the universe is isotropic today within ≈ 30%

(1996). To put more precisely, red-shift studies place the limit σ
H ≤ 0.3 on the ratio

of shear σ to Hubble constant H in the neighborhood of our galaxy today. Collins

et al.45 pointed out that for spatially homogeneous metric, the normal congruence

to the homogeneous expansion satisfies that the condition σ
H is constant.

Solving Eqs. (10) and (11) we get

α = log(nm2 T ) and β = log(n2T
1/m), (12)

where T = mt− n1, n1, n2 are integration constants.

Equation (12) can be rewritten as

eα = nm2 T and eβ = n2T
1/m. (13)

Hence the line element (1) is reduced to

ds2 = −dT
2

m2
+ n2m2 T 2 dx2 + n22T

2/m(dy2 + dz2), (14)

3. Some Physical and Geometrical Properties

Finally, in order to obtain the solution of the equation we consider the following

equation of state:

ρWDF = −2pWDF. (15)

From Eqs. (6), (8) and (15) we get

ρWDF = −2pWDF =
4(n2 −m+ 2)

3n22T
2

, (16)

where T = mt− n1, n1, n2 are integration constants.

The energy density of wet dark fluid is presented by 3D and 2D graphs in Figs. 1

and 2, respectively. The energy density of wet dark fluid approaches toward infinity

when cosmic time is at the initial stage. For large value of cosmic time, the energy

density of wet dark fluid is zero. The energy density of wet dark fluid has big rip

singularity at T =
(
t = n1

m

)
. It has big bang singularity at big value of t. The

intermediate phase is between big bang and big rip singularity.

Using Eqs. (7) and (16) we get

γ2 =
4(n2 + 3n2m−m− 3m2 + 1)

3n22T
2

. (17)
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Fig. 1. Behavior of energy density of wet dark fluid vs. cosmic time t (1 unit = 1 billion years)

and m with different n2.

Fig. 2. Energy density of wet dark fluid against cosmic time t (1 unit = 1 billion years).

The variation of γ against cosmic time is shown in Fig. 3. When cosmic time is

large, γ → 0 but when T → 0, the value of γ is diverging. The model has big rip

singularity at T =
(
t = n1

m

)
. The model is vanishing at big bang and diverges at

big rip i.e. the model is beginning at big bang and finishes with big rip singularity.

When T =
(
t = n1

m

)
, the value of γ →∞.
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Fig. 3. Variation of γ against cosmic time t (1 unit = 1 billion years).

The tilt angle λ, flow vectors uiand heat conduction vectors qi for the model

(14) are given by

coshλ = M1/2, sinhλ = (M − 1)1/2, (18)

where M = 4n2+9n2m−9m2−7m−2
6(n2+3n2m+1−2m−3m2) .

u1 =
(M − 1)1/2

nm2 T
, u4 = M1/2. (19)

The variations of flow vectors versus cosmic time are represented in Fig. 4 by

locating the value n2 = (1000, 1001, 1002, 1003) and m = (20, 21, 22, 23). The flow

vectors increase with increase in cosmic time. The flow vectors diverge when T =(
t = n1

m

)
. The flow vectors approach to zero for large value of cosmic time. The flow

vectors start with big bang whenT →∞.

q1 =
N1

T
, q4 =

N2

T
, (20)

where

N1 =
2Mnm2 (M − 1)1/2(2m+ 3m2 − n2 − 3n2m− 1)

n22

and

N2 =
2(M − 1)M1/2(n2 + 3n2m+ 1− 2m− 3m2)

n22
.
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Fig. 4. Variation of flow vectors against cosmic time (1 unit = 1 billion years).

Fig. 5. Variation of heat conduction vectors against cosmic time t (1 unit = 1 billion years).

The profiles of heat conduction vectors are represented by 2D and 3D graphs

in Figs. 5 and 6. The heat conduction vectors start at T → ∞ and end with

T =
(
t = n1

m

)
. The heat conduction vectors approach to infinite at trivial value of

cosmic time.
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Fig. 6. Variation of heat conduction vectors against cosmic time t (1 unit = 1 billion years)

and m.

The scalar expansion and shear scalar are

θ =
(m+ 2)M1/2

n2T
, (21)

σ2 =
2(m− 1)2

3n22T
2

, (22)

The variations of the scalar expansion against cosmic time are represented in

Fig. 7 by locating the values n2 = (1000, 1001, 1002, 1003) and m = (20, 21, 22, 23).

The scalar expansion increases with trivial value of cosmic time. When T → 0,

scalar expansion expanded the universe. The scalar expansion initiates at big bang

and stops with big rip.

The profile of shear scalar against cosmic time is shown in Fig. 8 by setting the

values n2 = (1000, 1001, 1002, 1003) and m = (20, 21, 22, 23). When T →
(
t = n1

m

)
,

the shear scalar is expanding. The shear scalar is in between the values of initial

and large cosmic time. The shear scalar starts at T →∞ and ends at T → 0. The

shear scalar has big rip singularity at T →
(
t = n1

m

)
. The shear scalar begins at big

bang and finishes with big rip singularity. The shear scalar has same singularity

like energy density of wet dark fluid and time dependent displacement field vector.

The spatial volume and the rate of expansion Hi in the direction of x, y, z-axis,

are respectively, given as

V = nm2 n
2
2T

2+m
m ,

H1 =
2m

n2T
, H2 = H3 =

2

n2T
.

(23)
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Fig. 7. Variations of scalar expansion against cosmic time t (1 unit = 1 billion years).

Fig. 8. Variation of shear scalar against cosmic timet (1 unit = 1 billion years).

The variations of spatial volume against cosmic time are represent in Fig. 9

by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23) and

n1 = −0.3. The spatial volume has same singularity like energy density of wet dark

fluid, time dependent displacement field vector and shear scalar.
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Fig. 9. Variations of spatial volume against cosmic time t (1 unit = 1 billion years).

Fig. 10. Variations of rate of expansion Hi against cosmic time t (1 unit = 1 billion years) and m.

The profile of rate of expansion Hi against cosmic time t and m is shown in

Fig. 10 by locating the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23)

and n1 = −0.3. The rate of expansion diverges at T =
(
t = n1

m

)
. It is expanded at

big rip and stops at big bang.

2050196-11

M
od

. P
hy

s.
 L

et
t. 

A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
C

Q
U

A
R

IE
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/2
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 19, 2020 17:4 MPLA S0217732320501965 page 12

V. J. Dagwal et al.

The density parameter, anisotropy parameter and deceleration parameter of the

model are respectively given as

Ω =
(n2 −m− 2)

9(m+ 2)2
,

∆ =
2

3

[
2 + (m+ 1)2

(m+ 2)2

]
,

q = −1 +
mn2

2(m+ 2)
.

(24)

4. Distances in Cosmology

The distance measurement played a significant role for sympathetic about Universe.

We have shown some of the different distance measures.

4.1. Look-back time-redshift

The look-back time tL is defined as the difference between the present age of the

universe t0 and the age of the Universe, when a particular light ray at redshift z

was emitted. The look-back time tL is defined as

tL = t0 − t(z) =

∫ a0

a

da

ȧ
, (25)

where t0 is present age of the universe .

The scale factor a in terms of redshift parameter z is written as

a

a0
=

1

1 + z
, (26)

where a0 is the present day scale factor of the universe and z denotes redshift of

light.

Using Eq. (26), we get

(mt− n1) = (mt0 − n1)(1 + z)
−3m
m+2 . (27)

From Eq. (27), we get

H0(t0 − t) =
2(m+ 2)

mn2

[
1− (1 + z)

−3m
m+2

]
(28)

where H0 is the Hubble constant at present. The value of Hubble constant H0 lies

between 50–100 km s−1 Mpc−1.

Using Eq. (28), we get

H0(t0 − t) =
6

n2

[
z − (1 + 2m)

(m+ 2)
z2 +

(1 + 2m)(4 + 5m)

(m+ 2)2
z3 + · · ·

]
. (29)
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Fig. 11. Variation of look-back time tL against redshift z.

By using q = −1 + mn2

2(m+2) , we get

H0(t0 − t) =
3m

(m+ 2)(q + 1)

[
z − (1 + 2m)mn2

2(q + 1)
z2

+
(1 + 2m)(4 + 5m)m2n22

6(q + 1)2
z3 + · · ·

]
. (30)

In Eq. (28), when z →∞, we get

tL = t0 − t = H−1
0

[
2(m+ 2)

mn2

]
=

H−1
0

(1 + q)
. (31)

For small value of z, using Eq. (30), we get

H0(t0 − t) ∼=
3m

(m+ 2)(q + 1)
z. (32)

The profile of look-back time tL against redshift z is shown in Fig. 11 by setting

the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23) and H0 = 70.

4.2. Proper distance

The proper distance d(z) is defined as the distance between a cosmic source emitting

light at any instant t = t1 located at r = r1 with redshift z and the observer

receiving the light from the source emitted at r = 0 and t = t0.

d(z) = r1a0, (33)

where r1 =
∫ t0
t

dt
a .
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Fig. 12. Variation of proper distance d(z) against redshift z.

The proper distance d(z) is given by

d(z) =
(m+ 2)

n2(m− 1)
H−1

0

[
1− (1 + z)

−2(m−1)
(m+2)

]
. (34)

When z →∞, the proper distance d(z) is (m+2)
n2(m−1)H

−1
0 .

The profile of proper distance d(z) against redshift z is shown in Fig. 12 by

setting the values of n2 = (1000, 1001, 1002, 1003),m = (20, 21, 22, 23) andH0 = 70.

4.3. Luminosity distance

The luminosity distance dLof light source is defined as

dL = a0r1(1 + z) = d(z)(1 + z). (35)

From Eqs. (34) and (35) we get

dL =
(m+ 2)

n2(m− 1)
H−1

0

[
1− (1 + z)

−2(m−1)
(m+2)

]
(1 + z). (36)

The profile of luminosity distance dL against redshift z is shown in Fig. 13 by

setting the values of n2 = (1000, 1001, 1002, 1003),m = (20, 21, 22, 23) andH0 = 70.

4.4. Angular-diameter distance

The angular-diameter distance dA is defined in term of proper distance and lumi-

nosity distance as

dA = d(z)(1 + z)−1 = dL(1 + z)−2. (37)
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Fig. 13. Variation of luminosity distance dL against redshift z.

Fig. 14. Variation of angular-diameter distance dA against redshift z.

From Eqs. (34) and (37) we get

dA =
(m+ 2)

n2(m− 1)
H−1

0

[
1− (1 + z)

−2(m−1)
(m+2)

]
(1 + z)−1. (38)

The profile of angular-diameter distance dA against redshift z is shown in Fig. 14

by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23) and

H0 = 70.
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Fig. 15. Variation of Hubble parameter H(z) against redshift z.

4.5. Distance modulus

The distance modulus µ(z) is defined as

µ(z) = 5 log dL + 25. (39)

From Eqs. (36) and (39) we get

µ(z) = 5 log

{
(m+ 2)

n2(m− 1)
H−1

0

[
1− (1 + z)

−2(m−1)
(m+2)

]
(1 + z)

}
+ 25. (40)

The Hubble parameter H and deceleration parameter q in terms of redshift z

(Ref. 46) are given by

H(z) = 2(m+ 2)nm−1
2 (1 + z)(

3m
m+2 ), (41)

or,

H(z) = H0(1 + z)

(
3m
m+2

)
, (42)

q(z) = −1− 3m

2(m+ 2)2n
(m−1)
2

(1 + z)−
(

3m+n2+2
m+2

)
, (43)

or

q(z) = −1− (1 + q0)(1 + z)−
(

3m+n2+2
m+2

)
, (44)

where H0 is the present value of the Hubble parameter and q0 is the present value

of the deceleration parameter.

The profile of Hubble parameter H(z) against redshift z is shown in Fig. 15 by

setting the values m = (20, 21, 22, 23) and H0 = 70.
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Fig. 16. The contour plot of deceleration parameter q(z) against redshift z.

The contour plot of deceleration parameter q(z) against redshift z is shown in

Fig. 16 by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23)

and H0 = 70.

5. Results and Discussion

The pressure pWDF and the energy density ρWDF of wet dark fluid are vanishing

at large cosmic time but when T → 0, the pressure pWDF and the energy density

ρWDF of wet dark fluid are divergent. Tiled angleλ and flow vectors u4are constant.

When M = 1, the tilt angle λ, the flow vectors u4and heat conduction vectors q1, q4
are zero. When T =∞, the flow vectors u1 and heat conduction vectors q1, q4 are

disappearing but the flow vectors u1and heat conduction vectors q1, q4 are divergent

at T = 0. At T = ∞, the scalar expansion and shear scalar are disappearing but

primarily, the scalar expansion and shear scalar are divergent. The shear scalar is

zero atm = 1 and the scalar expansion is disappearing for m = −2. The models

are nonexpanding at m = −2 and no shearing when m = 1. The spatial volume is

constant for m = −2 . When T = 0 , the rate of expansion is divergent. But for T →
∞, the rate of expansion is zero. The density parameter and anisotropy parameter

are constant. The density parameter and anisotropy parameter are divergent for

m = −2 .

6. Conclusion

We have examined the tilted universe with big rip singularity and wet dark fluid

in Lyra geometry. The model is expanding, shearing and rotating universe. The
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spatial volume, the energy density of wet dark fluid, time dependent displacement

field vector and shear scalar have big rip singularity at T =
(
t = n1

m

)
. The models are

vanishing at big bang and diverge at big rip i.e. the model is begins at big bang and

ends with big rip singularity. The tilted universe has intermediate phase between big

bang and big rip singularity. The model initiates with big bang at the initial stage.

The expansion in the model decreases as time rises and the expansion in the model

rest at large cosmic time. The pan cake-type47 singularity is observed in the universe

when cosmic time is zero. We have discussed physical and geometrical properties of

the different parameter. These results match with the results investigated by Sahoo

et al.48 and Dagwal.49

• The energy density of wet dark fluid is presented by 3D and 2D graphs in Figs. 1

and 2, respectively. The energy density of wet dark fluid approaches toward in-

finity when cosmic time is at the initial stage. For large value of cosmic time, the

energy density of wet dark fluid is zero. The energy density of wet dark fluid has

big rip singularity at T =
(
t = n1

m

)
. It has big bang singularity at big value of t.

The intermediate phase is between big bang and big rip singularity.

• The variation of γ against cosmic time is shown in Fig. 3. When cosmic time is

large, γ → 0 but when T → 0, the value of γ is diverging. The model has big rip

singularity at T =
(
t = n1

m

)
. The model is vanishing at big bang and diverges at

big rip i.e. the model begins at big bang and finishes with big rip singularity.

• The variations of flow vectors versus cosmic time are represented in Fig. 4 by

locating the value n2 = (1000, 1001, 1002, 1003) and m = (20, 21, 22, 23). The

flow vectors increases with increase in cosmic time. The flow vectors diverge

when T =
(
t = n1

m

)
. The flow vectors approach to zero for large value of cosmic

time. The flow vectors start with big bang whenT →∞ .

• The profile of heat conduction vectors are represented by 2D and 3D graphs in

Figs. 5 and 6, respectively. The heat conduction vectors start at T →∞ and end

with T =
(
t = n1

m

)
. The heat conduction vectors approach to infinite at trivial

value of cosmic time.

• The variations of the scalar expansion against cosmic time are represented

in Fig. 7 by locating the values n2 = (1000, 1001, 1002, 1003) and m =

(20, 21, 22, 23). The scalar expansion increases with trivial value of cosmic time.

When T → 0, scalar expansion expanded the universe. The scalar expansion

initiates at big bang and stops with big rip.

• The profile of shear scalar against cosmic time is shown in Fig. 8 by setting

the values n2 = (1000, 1001, 1002, 1003) and m = (20, 21, 22, 23). When T =(
t = n1

m

)
, the shear scalar is expanding. The shear scalar is in between the values

of initial and large cosmic time. The shear scalar starts at T → ∞ and ends at

T → 0. The shear scalar has big rip singularity at T =
(
t = n1

m

)
. The shear scalar

is beginning at big bang and finishes with big rip singularity. The shear scalar

has same singularity like energy density of wet dark fluid and time-dependent

displacement field vector.
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Tilted universe with big rip singularity in Lyra geometry

• The variations of spatial volume against cosmic time are represented in Fig. 9

by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23) and

n1 = −0.3. The spatial volume has same singularity like energy density of wet

dark fluid, time-dependent displacement field vector and shear scalar.

• The profile of rate of expansion Hi against cosmic time t and m is show in Fig. 10

by locating the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23) and

n1 = −0.3. The rate of expansion diverges at T =
(
t = n1

m

)
. It is expanded at big

rip and stops at big bang.

• The profile of look-back time tL, proper distance d(z), luminosity distance dL and

angular-diameter distance dA against redshift z are shown in Figs. 11–14, respec-

tively, by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23)

and H0 = 70.

• The profile of Hubble parameter H(z) against redshift z is shown in Fig. 15 by

setting the values m = (20, 21, 22, 23) and H0 = 70.

• The contour plot of deceleration parameter q(z) against redshift z is shown in

Fig. 16 by setting the values of n2 = (1000, 1001, 1002, 1003), m = (20, 21, 22, 23)

and H0 = 70.
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36. C. Aktaş, Mod. Phys. Lett. A 34, 1950066 (2019).
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Abstract: This paper deals with the study of tilted plane symmetric cosmological model in the presence of perfect fluid,

heat conduction and massless scalar field. We investigate the analytical solution of field equations by imposing power law

relation between the metric potentials as well as the equation of state p ¼ xq; 0�x� 1. Also, some physical and

kinematic parameters of the model are discussed.

Keywords: Tilted model; Plane symmetric; Perfect fluid; Massless scalar field

1. Introduction

In 1920s Albert Einstein and Alexander A. Friedmann

proposed a theoretical framework based on general rela-

tivity, which is one of the strongest pillars of hot Big Bang

theory. It is well known that Einstein’s general theory of

relativity is the most successful theory of gravitation, used

to construct the cosmological models of the universe. Our

present understanding of the universe is based upon this hot

Big Bang theory, which explains its evolution from the

early stage to present stage of the universe. In fact,

expansion of the universe, the relative abundance of light

elements and the cosmic microwave background (CMB)

have helped to establish the hot Big Bang as the preferred

model of the universe. Recent modern cosmological

observations of Riess et al. [1, 2] and Perlmutter et al. [3]

from type Ia Supernovae (SNela) point out that our uni-

verse is going through accelerated expansion phase. The

intriguing evidence for this is obtained with the support of

Bennett et al. [4] and Tegmark et al. [5]. This accelerated

expansion of the universe causes due to dark energy which

is not yet understood. On the large scales, the universe has

a flat geometry and this flatness occurs due to matter

present in the universe. But there is neither sufficient

ordinary matter nor dark matter in the universe to produce

this flatness. Hence, the difference must be attributed to the

component with negative pressure which is called a dark

energy which composes with≃3/4 of the critical density.

This dark energy causes the accelerated expansion of the

universe. The Wilkinson Microwave Anisotropy Probe

(WMAP) satellite made precision measurements of CMB

fluctuations from which researchers were able to determine

several cosmological parameters such as density of the

ordinary matter and dark matter, Hubble constant, age of

the universe and cosmological constant. Also, WMAP

experiment suggested that 73% content of the universe is in

the form of dark energy, 23% in the form of non-baryonic

dark matter and the rest 4% in the form of the ordinary

baryonic matter as well as radiation.

We considered the plane symmetric cosmological

model. In recent years, there has been a considerable

interest in investigating the plane symmetric cosmologies

in spite of spherical symmetry since it plays vital role in

understanding inhomogeneities of theoretical cosmology.

Inhomogeneous plane symmetric model has been studied

by Taub [6, 7], Szekeres [8], Tomimura [9], Singh and

Ram [10] and Taruya and Nambu [11]. Plane symmetric

model with vacuum and Zel’dovich fluid has been obtained

by Mohanty et al. [12]. Pradhan [13] and Venkateswarlu

et al. [14] presented inhomogeneous anisotropic non-static

plane symmetric model. Also, Mishra [15] has studied the*Corresponding author, E-mail: sarikashahare83@gmail.com;

pawar@yahoo.com; yadaosolanke@gmail.com; vdagwal@gmail.com
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effect of vacuum inhomogeneous plane symmetric space

time on the evolution of the universe. Pawar et al. [16]

investigated plane symmetric model with disordered radi-

ation. Sahoo and Mishra [17] obtained solutions for plane

symmetric model with quark matter with the help of

Rosen’s theory. Recently, Pawar and Agrawal [18] pre-

sented homogeneous plane symmetric model in f(R,

T) theory with the quark and strange quark matter.

After the development of inflationary model, Linde [19]

has discussed the importance of scalar field (mesons) in

cosmology. One of the interacting fields is a massless

scalar field. From the last few decades, a considerable

interest has been focused on the cosmological models with

massless scalar field coupled to the gravitational field.

Bergmann and Leipnik [20] and Bramhachary [21] have

developed the massless scalar field with spherically sym-

metric gravitational fields. Buchdahl [22], Gautreau [23],

Stephenson [24], Rao [25], Singh [26] and Chatterjee and

Roy [27] obtained solutions of field equations with mass-

less scalar field (meson field) in the framework of general

relativity. The gravitational repulsion in the Einstein’s

theory with massless scalar field has been investigated by

Krori et al. [28]. He noticed that gravitational repulsion is

possible for particle velocities lower than those required in

the Schwarzchild field in the presence of scalar field.

According to Santilli [29], the massless scalar field is

basically an attempt to look into yet unsolved problem of

unification of gravitational and quantum theories. Further

study of massless scalar field has been done by Reddy [30],

Pradhan [31], Panigrahi [32] and Katore [33]. Inflationary

universe scenario with constant deceleration parameter in

the presence of massless scalar field and flat potential

taking Bianchi type VI0 space time as a source is discussed

by Bali and Kumari [34]. The massless scalar field acquired

a particular importance due to the suggestion given by

Weinberg and Wilkzek [35, 36]—there should exist axion

(pseudo-scalar) of negligible mass. This idea of axion is

further supported by the work of Peccei and Quinn [37].

In the present work, we study tilted cosmological model

in the presence of perfect fluid, heat conduction with

massless scalar field. King and Ellis [38], Ellis and King [39]

and Collins and Ellis [40] have bowed the seed of tilted

cosmological models. Particularly, homogeneous cosmo-

logical model is said to be tilted if the fluid flow velocity

vector is not orthogonal to the group orbits; otherwise, the

model is said to be non-tilted. Tilted Bianchi type I model

with electromagnetic field has been discussed by Dunn and

Tupper [41], Lorenz [42]. Mukherjee [43], Bali and Meena

[44], Coley [45] and Pradhan [46] studied tilted cosmolog-

ical models. Tilted plane symmetric cosmological model

with heat conduction and disordered radiation has been

discussed by Pawar et al. [47]. Pawar and Dagwal [48, 49]

presented tilted two fluid cosmological model in general

relativity and Kantowski–Sachs cosmological model in

scalar tensortheory of gravitation. Sahu [50, 51] obtained

tilted Bianchi type I cosmological model with mesonic stiff

fluid and Lyra geometry. Pawar et al. [52] investigated tilted

plane symmetric model in the presence of magnetic field

with dust fluid. Tilted cosmological model in f(R, T) theory

of gravitation has been investigated by Pawar and Dagwal

[53]. Recently, Pawar and Shahare [54–56] investigated

some tilted cosmological models in presence of perfect fluid.

The present model is characterized by the equation of

state (EoS) p ¼ xq; 0�x� 1 by considering some cases.

In general relativity, the evolution of the expansion rate is

parameterized by the cosmological equation of state (EoS).

It is the relation between temperature, pressure, and com-

bined matter, energy and vacuum energy density for any

region of space. It plays important role in observational

cosmology today. Aÿgun et al. [57] have investigated the

cosmological model with the help of equation of states

(EOS). We focused our attention to study the tilted plane

symmetric homogeneous and anisotropic cosmological

model in the presence of perfect fluid, heat conduction and

zero-mass scalar field. Physical and kinematical solutions

of the field equations are obtained for the applications in

cosmology and astrophysics. Homogeneous and aniso-

tropic cosmological models have been studied widely in

the framework of general relativity in the search of realistic

picture of the universe. The purpose of this paper is to

study the effect of tilted congruence of the model. To get

the deterministic model, we have used two basic assump-

tions: (1) equation of state (EoS) and (2) the power law

relation between the metric potentials A and B. We also

studied the behavior of some physical and geometrical

parameters. This paper is organized as follows: Sect. 2

presents the metric and field equations, Sect. 3 provides the

solutions of the field equations, Sect. 4 discusses the dis-

tance modulus, Sect. 5 presents the results and discussion,

and Sect. 6 gives the conclusion.

2. Metric and field equations

We consider the plane symmetric metric in the form

ds2 ¼ �dt2 þ A2 tð Þ dx2 þ dy2
� �þ B2 tð Þdz2 ð1Þ

The field equations determine the values of the

components of the metric of a space time for some

known content. Once the metric is known, one can begin to

compute geodesics in the space time: these are the paths

that bundles of light rays travel along or the orbits that

planets trace out. This enables GR, as a gravitational

theory, to predict directly observable quantities. This also

applies to the entire universe: Einstein’s field equations

D D Pawar et al.



allow the metric for the entire universe to be computed

once the content of the universe is known. The Einstein’s

field equations in the presence of perfect fluid, heat

conduction and zero-mass scalar field are given by

Rj
i �

1

2
Rg j

i ¼ �8p PT j
i þ tT j

i

� � ð2Þ

where

PT j
i ¼ pþ qð Þuiu j þ pg j

i þ qiu
j þ uiq

j ð3Þ
is the energy momentum tensor for perfect fluid with heat

conduction together with

giju
iu j ¼ �1; ð4Þ

qiq
j [ 0 and qiu

i ¼ 0: ð5Þ
where p is the pressure, q is the energy density, qi is the

heat conduction vector orthogonal to ui. The fluid flow

vector ui has the components 0; 0; sinh aB ; cosh a
� �

satisfying

Eq. (5) and a is the tilt angle.

Further, the stress tensor corresponding to massless

scalar field tT j
i is given by

tT j
i ¼ 1

4p
UiU

j � 1

2
g j
i UaU

a

� �
ð6Þ

The Klein–Gordon equation corresponding to the scalar

field U is given by

gijU;ij ¼ 0 ð7Þ
The field equations of metric (1) reduce to

A44

A
þ B44

B
þ A4

A

B4

B
¼ �8pp� U2

4 ; ð8Þ

A4

A

� �2

þ2
A44

A
¼ �8p pþ qð Þ sinh2 aþ pþ 2q3

sinh a
B

þ 1

8p
U2

4

� �
;

ð9Þ
A4

A

� �2

þ2
A4

A

B4

B
¼ �8p � pþ qð Þ cosh2 aþ p� 2q3

sinh a
B

� 1

8p
U2

4

� �
;

ð10Þ

�8p pþ qð ÞB sinh a cosh aþ q3 cosh aþ q3
sinh2 a
cosh a

� �
¼ 0;

ð11Þ
U44 þ U4 log A2B

� �� 	
;4
¼ 0: ð12Þ

where suffix 4 after field variable denotes ordinary differ-

entiation with respect to cosmic time t.

For the plane symmetric cosmological model, the

average scale factor R and the spatial volume V are given

by

R tð Þ ¼ A2B
� �1

3 ð13Þ

V ¼ R3 ¼ A2B ð14Þ
The directional mean Hubble’s parameter for this model

is given by

H ¼ R4

R
¼ 1

3
H1 þ H2 þ H3ð Þ: ð15Þ

where H1;H2 and H3 are the directional Hubble’s param-

eters in the directions of x, y and z axes, respectively.

The anisotropic expansion parameter Am for the universe

is defined as

Am ¼ 1

3

X3
i¼1

DHi

H

� �2

; where DHi ¼ Hi � H ð16Þ

This anisotropic parameter can be used to examine

whether the universe expands anisotropically or

isotropically. The universe expands anisotropically for

nonzero value of anisotropic parameter, and that of it

expands isotropically if Am ¼ 0.

The deceleration parameter is given by

q ¼ �RR44

R2
4

¼ d

dt

1

H

� �
� 1 ð17Þ

Also, the expansion scalar H and the shear scalar r are

given by

H ¼ 3H ¼ 2
A4

A
þ B4

B
ð18Þ

r2 ¼ 1

2

X3
i¼1

H2
i � 3H2

 !
ð19Þ

3. Cosmological solutions

In order to obtain explicit solution of field equations (8)–

(12), which are highly nonlinear differential equations in

seven unknowns, namely B; U; p; q; a and q3, we have

imposed two extra constraints:

(a) Equation of state (EOS). In principle, there is no

compelling reason for this choice.

p ¼ xq; 0�x� 1: ð20Þ
This gives rise to the following cases:

(1) For mesonic fluid, x ¼ 0:

(2) For a stiff fluid or Zel’dovich fluid, we have x ¼ 1:

(3) For a radiation dominated solution, we have x ¼ 1
3
:

(b) The power law relation between metric potentials A

and B is

B ¼ An; where n 6¼ 1 is constant: ð21Þ
Using Eqs. (20) and (21) in Eq. (8) gives

Anisotropic plane symmetric model with massless scalar field



�8pp ¼ nþ 1ð ÞA44

A
þ n2

A4

A

� �2

þU2
4 ð22Þ

�8pq ¼ 1

x
nþ 1ð ÞA44

A
þ n2

A4

A

� �2

þU2
4

" #
: ð23Þ

From Eq. (12), scalar field U is given by

U4 ¼ C

A2B
ð24Þ

The directional mean Hubble’s parameter for this model

is given by

H ¼ 1

3
2
A4

A
þ B4

B

� �
: ð25Þ

where the directional Hubble’s parameters along

directions of x, y and z axes, respectively, are given by

H1 ¼ A4

A
; H2 ¼ A4

A
; H3 ¼ B4

B
: ð26Þ

The anisotropic expansion parameter Am for the universe

is given by

Am ¼ 2
n� 1

nþ 2

� �2

; where n 6¼ 1; n 6¼ �2 ð27Þ

The present value of anisotropic expansion parameter

Am nearly matches with that of value obtained by Rao and

Prasanthi [58], Sahoo et al. [59] and Mishra et al. [60].

Also, the expansion scalar H and the shear scalar r are

given by

H ¼ 3H ¼ 2
A4

A
þ B4

B
ð28Þ

r2 ¼ 1

3
n� 1ð Þ2; where n 6¼ 1 ð29Þ

From Eq. (27) and (29), it is observed that values of

anisotropic expansion parameter Am and shear scalar r are

independent of x and hence remain the same in all the

cases.

The heat conduction vectors are

q1 ¼ q2 ¼ 0;

q3 ¼ � xþ 1ð ÞqAn sinh a cosh2 a
cosh 2a

;

q4 ¼ xþ 1ð Þq sinh2 a cosh a
ð30Þ

Case I For mesonic fluid x ¼ 0:

For mesonic fluid, solution of our model is as follows:

Solving field equations (8)–(12) with the help of (21)

gives

A ¼ Tm; B ¼ Tmn ð31Þ
where T ¼ c1t þ c2; m ¼ n2

nþ1
þ 1; n 6¼ 1. Also, c1 and c2

are constants of integrations.

V ¼ Tm nþ2ð Þ ð32Þ
Also, from Eq. (24) scalar field U is

U ¼ c3T
1� nþ2ð Þm

1� nþ 2ð Þm ð33Þ

where c3 is constant of integration.

Using Eqs. (22)–(23), (31)–(32) with x ¼ 0, the pres-

sure and energy density become

p ¼ 0 ð34Þ

8pq ¼ 2 nþ 1ð Þ c
2
3m

2

T2
þ 2c23m m� 1ð Þ

T2
ð35Þ

The directional mean Hubble’s parameter for this model

is given by

H ¼ mc1
3

nþ 2

T

� �
: ð36Þ

where the directional Hubble’s parameters are

H1 ¼ mc1
T

; H2 ¼ mc1
T

; H3 ¼ mnc1
T

: ð37Þ

The anisotropic expansion parameter Am for the universe

is given by

Am ¼ 2
n� 1

nþ 2

� �2

; where n 6¼ 1; n 6¼ 2 ð38Þ

Also, the expansion scalar H and the shear scalar r are

given by

H ¼ mc1
nþ 2

T

� �
ð39Þ

r2 ¼ 1

3
n� 1ð Þ2; where n 6¼ 1 ð40Þ

The deceleration parameter q is

q ¼ 1� n

nþ 2
ð41Þ

Tilted angle is

cosh2 a ¼ nþ 1

2n
; sinh2 a ¼ 1� n

2n
ð42Þ

The heat conduction vectors are

q1 ¼ q2 ¼ 0; q3 ¼ �1

8p
2 nþ 1ð Þ c

2
3m

2

T2
þ 2c23m m� 1ð Þ

T2

� �

Tm 1þ n

2

� � ffiffiffiffiffiffiffiffiffiffiffi
1� n

2n

r
;
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q4 ¼ 1

8p
2 nþ 1ð Þ c

2
3m

2

T2
þ 2c23m m� 1ð Þ

T2

� �
1� n

2n

� � ffiffiffiffiffiffiffiffiffiffiffi
1þ n

2n

r

ð43Þ
ds2 ¼ �dT2 þ T2m dx2 þ dy2

� �þ T2mndz2 ð44Þ
Case II For a stiff fluid or Zel’dovich fluid, we have

x ¼ 1:

Equations (9), (10), (20) and (23) result in

A44

A4

þ nþ 1ð ÞA4

A
¼ 0 ð45Þ

Integrating Eq. (45) gives

A ¼ k1t þ k2ð Þ 1
nþ2¼ T

1
nþ2

1 ;

B ¼ k1t þ k2ð Þ n
nþ2¼ T

n
nþ2

1 : ð46Þ
where T1 ¼ k1t þ k2:

The spatial volume is

V ¼ T1 ð47Þ
where k1 and k2 are constants of integration.

Scalar field U is

U ¼ log k1t þ k2ð Þ
k1

ð48Þ

Using Eqs. (22), (46)–(47) with x ¼ 1, the pressure and

energy density become

8pp ¼ 8pq ¼ 1

T2
1

k21 1� 2nð Þ
nþ 2ð Þ2 � C2

" #
; n 6¼ �2; n 6¼ 1

ð49Þ
The directional mean Hubble’s parameter for this model

is given by

H ¼ mk1
3

nþ 2

T1

� �
: ð50Þ

where the directional Hubble’s parameters are

H1 ¼ mk1
T1

; H2 ¼ mk1
T1

; H3 ¼ mnk1
T1

: ð51Þ

The anisotropic expansion parameter Am for the universe

is given by

Am ¼ 2
n� 1

nþ 2

� �2

; where n 6¼ 1; n 6¼ 2 ð52Þ

Also, the expansion scalar H and the shear scalar r are

given by

H ¼ mk1
nþ 2

T1

� �
ð53Þ

r2 ¼ 1

3
n� 1ð Þ2; where n 6¼ 1 ð54Þ

The deceleration parameter q is

q ¼ 3 nþ 1ð Þ
nþ 2ð Þ n2 þ nþ 1ð Þ � 1 ð55Þ

Tilted angle is

cosh2 a ¼ 1;

sinh2 a ¼ 0 ð56Þ
The heat conduction vectors are

q1 ¼ q2 ¼ q3 ¼ q4 ¼ 0 ð57Þ

ds2 ¼ �dT2
1 þ T

2
nþ2

1 dx2 þ dy2
� �þ T

2n
nþ2

1 dz2 ð58Þ
Case III For a radiation dominated solution, we have

x ¼ 1
3
:

For this case, Eqs. (9), (10), (21) and (24) result in

2A44 þ 2
n2 þ nþ 1

nþ 2

� �
A2
4

A
¼ �2C2

nþ 2ð ÞA2nþ3

This equation can be written as

df 2

dA
þ n2 þ nþ 1

nþ 2

� �
2

A
f 2 ¼ �2C2

nþ 2ð ÞA2nþ3
: ð59Þ

where A4 ¼ f Að Þ; A44 ¼ f df
dA

Equation (59) gives

f 2 ¼ dA

dt

� �2

¼ C2A�2n�2

2nþ 1
þ d1A

�2 n2þnþ1
nþ2

� �
ð60Þ

where d1 is constant of integration.

For this solution metric (1) reduces to

ds2 ¼ � C2T�2n�2
2

2nþ 1
þ d1T

�2 n2þnþ1
nþ2

� �
2

� ��1

dT2
2

þ T2
2 dX2 þ dY2
� �þ T2n

2 dZ2 ð61Þ
where A ¼ T2; dx ¼ dX; dy ¼ dY ; dz ¼ dZ:

So that A ¼ T2; B ¼ Tn
2 : ð62Þ

For this case, the spatial volume is

V ¼ Tnþ2
2 ð63Þ

Using Eqs. (23)–(26) with x ¼ 1, the pressure and

energy density become

8pp ¼ d1
2nþ 1

nþ 2

� �
T

�2n2�4n�6
nþ2

2 ; n 6¼ �2 ð64Þ

8pq ¼ 3d1
2nþ 1

nþ 2

� �
T

�2n2�4n�6
nþ2

2 ; n 6¼ �2 ð65Þ

The directional mean Hubble’s parameter for this model

is given by

Anisotropic plane symmetric model with massless scalar field



H ¼ nþ 2

3

1

T2

� �
: ð66Þ

where the directional Hubble’s parameters are

H1 ¼ 1

T2
; H2 ¼ 1

T2
; H3 ¼ n

T2
: ð67Þ

The anisotropic expansion parameter Am for the universe

is given by

Am ¼ 2
n� 1

nþ 2

� �2

; where n 6¼ 1; n 6¼ 2 ð68Þ

Also, the expansion scalar H and the shear scalar r are

given by

H ¼ nþ 2

T2
ð69Þ

r2 ¼ 1

3
n� 1ð Þ2; where n 6¼ 1 ð70Þ

The deceleration parameterq is

q ¼ 1� n

nþ 2
; n 6¼ 1: ð71Þ

Tilted angle is

cosh2 a ¼ nþ 3

2 nþ 1ð Þ ; sinh2 a ¼ 1� n

2 nþ 1ð Þ ; n 6¼ �1:

ð72Þ
The heat conduction vectors are

q1 ¼ q2 ¼ q4 ¼ 0

q3 ¼ � 1

8p
nþ 3ð Þ 2nþ 1ð Þ

nþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

2 nþ 1ð Þ

s
T

�n2�2n�6
nþ2

2 ð73Þ

4. Distance modulus

The direct evidence for the current acceleration of the

universe is related to the observation of luminosity dis-

tances of high redshift supernovae [1–3]. The apparent

magnitude ɱ of the source with an absolute magnitude M

is related to the luminosity distance dL. Distance modulus

(µ) is the distance between apparent magnitude (ɱ) and

absolute magnitude (M). It is the measure of distance to the

object.

74

If redshift z � 1, then H0dL � z

dL ¼ 1þ z

H0

Zz
0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm0ð1þ z0Þ3 þ XK0

q ; ð75Þ

satisfying Xm0 þ XK0 ¼ 1, where Xm0 and XK0 are non-

relativistic matter density and dark energy density,

respectively (Tables 1, 2).

We can measure the apparent magnitude ɱ and the

redshift z observationally; it depends upon the objects

which we observe. In order to get a feeling of the phe-

nomenon, we consider two supernovae: 1990O at low-

redshift z=0.03 with ɱ=16.26 and 1997R at high redshift z

=0.657 with m=23.83 [1, 2]. For z≪1, the luminosity dis-

tance is approximately given by dL(z)≈z/H0. Using the

apparent magnitude ɱ=16.26 of 1990O at z=0.03, the

absolute magnitude is estimated as M=−19.28 from

Eq. (74). Here, we adopted the value H0
−1=2998 h−1 Mpc

with h=0.70. Then, the luminosity distance of 1997R is
obtained by substituting ɱ=23.83 and M=−19.15 in
Eq. (74):

H0dL � 0:92; for z ¼ 0:657: ð76Þ
Also, for ɱ=23.83 and M=−19.15,

H0dL � 0:817; for z ¼ 0:656: ð77Þ
From Eq. (75) the theoretical estimate for the luminosity

distance in a two-component flat universe is

H0dL z ¼ 0:657ð Þ � 0:740; Xm0 � 1 ð78Þ
H0dL z ¼ 0:657ð Þ � 0:92; Xm0 � 0:3; XK0 � 0:7

ð79Þ
H0dL z ¼ 0:656ð Þ � 0:817; XK0 � 0:38 ð80Þ

In fact, two data points are not sufficient to conclude that

the present cosmological expansion is accelerating and

dark energy required. But by assuming a flat universe,

Perlmutter et al. [3] found that about 70% of the energy

density of the present universe consists of dark energy.

Hence, dark energy is required to best fit the theoretical

data and observational data (Fig. 1).

5. Results and discussion

Case I For mesonic fluid x ¼ 0:

Recent astrophysical observations show that the

observed value of deceleration parameter of the universe is

in the range �1\q� 0 which is q0 � �0:77. In the present

case for n=2.5, we have obtained q0 ¼ �0:76 which is

consistent with respect to the observed value of DP of the

universe at present epoch [61]. Here, q\0 for n[ 1;

hence, our model is accelerating. For 0:6� n\1, � �1; 0ð Þ;
also, for n[ 1; q\0 and hence our model is accelerating.

D D Pawar et al.



Figure 2a and b shows the variation of energy density,

Hubble parameter versus cosmic time t in an accelerating

mode of the universe for different values of n=1.5, 1.6,

1.65 and C1 ¼ 2:5; C2 ¼ 3:1. It is observed that energy

density and Hubble parameter are decreasing functions of

cosmic time and they vanish for large value of T and

become infinite at T=0. Also, it remains positive

throughout the evolution of the universe. It starts with a

positive value and approaches to zero as T ! 1: Also,

since �1\q� 0, the present model represents accelerating

universe. Hence, the universe starts evolving with big bang

singularity at T=0. That’s why the model obtained here is

not only expanding but also accelerating which represents

early stages of evolution of the universe which is in good

agreement with recent observations.

Also, Fig. 3a and b shows variation of spatial volume V,

expansion scalar H versus cosmic time. It is observed that

the spatial volume increases with an increase in cosmic

time. Also, V ! 0 as T ! 0 and V ! 1 as T ! 1,

which show that the universe starts expanding with zero

Table 1 Illustration of SNeIa apparent magnitude data at low-redshift z � 1

Name of SN Redshift (z) Apparent magnitude (ɱ) Luminosity distance H0dLð Þ Absolute magnitude (M)

1990O 0.03 16.26 0.03 −19.28

1992bg 0.036 16.66 0.036 −19.29

Table 2 Illustration of SNeIa apparent magnitude data at high redshift z, Perlmutter et al. [3]

Name of SN Absolute magnitude (M) Redshift (z) Apparent magnitude (ɱ) Luminosity distance H0dLð Þ

1997R −19.15 0.657 23.83 0.92

1995ck −19.15 0.656 23.57 0.817

Fig. 1 Variation of H0dL against redshift z

Fig. 2 Variation of energy

density and variation of Hubble

parameter against cosmic time

for C1 ¼ 2:5; C2 ¼ 3:1 with

varying n ¼ 1:5; 1:6; 1:65

Anisotropic plane symmetric model with massless scalar field



volume and explode at infinite past. The expansion scalar is

a decreasing function of cosmic time. It is observed that the

expansion rate is faster at the beginning and becomes slow

in the later stage. It starts with the positive value

approaching to zero as T ! 1. Tilted angle and heat

conduction vector are functions of cosmic time.

Case II For a stiff fluid or Zel’dovich fluid, we have x ¼ 1

In this case, the model (58) admits a singularity at

T1 ! 1. Also, the metric potentials A and B tend to zero

as T1 ! 0 and hence the space time collapses at T1 ! 0. It

is observed from Eq. (48) that the massless scalar field U is

a logarithmic function of cosmic time and hence Big Bang

of the universe can be avoided by introducing scalar field

U. The mean anisotropy parameter Am and shear scalar σ
of the model are constant and same as that of previous case.

Tilted angle is independent of cosmic time, and heat con-

duction vectors are zero. Figure 4a shows the variation of

pressure (p) with respect to cosmic time for different values

of n and it is observed that pressure decreases with an

increase in cosmic time. Also, it remains positive

throughout the evolution of the universe. Figure 4b depicts

the variation of energy density qð Þ with respect to cosmic

time for different values of n, and it is observed that energy

density starts with a positive value and then decreases with

an increase in cosmic time. Also, it is observed that for

infinite value of T1, pressure and energy density tend to

zero. Figure 5a and b represents variation of Hubble

parameter and expansion scalar versus cosmic time. We

observed that Hubble parameter and expansion scalar are

positive decreasing functions of cosmic time and they

approaches to zero as T1 ! 1. Figure 6 depicts variation

of the spatial volume against cosmic time. The universe

starts its expansion with zero volume and expands expo-

nentially with an increase in cosmic time and becomes

infinite when T1 ! 1 which indicates that the present

model starts expanding with big bang singularity at

T1 ! 0. In this case, the shear scalar and the mean aniso-

tropy parameter Am are constant throughout the evolution

Fig. 3 Variation of spatial

volume and variation of

expansion scalar against cosmic

time for C1 ¼ 2:5; C2 ¼ 3:1
with varying n ¼ 1:5; 1:6; 1:65

Fig. 4 Variation of pressure

and energy density against

cosmic time for k1 ¼ 2:5; k2 ¼
3:1; C ¼ 0:012 with varying

n ¼ 0:015; 0:115; 0:215
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of the universe; however, these values are exactly same as

the previous case.

Case III For a radiation dominated solution, we have

x ¼ 1
3
:

Equation (71) shows that the deceleration parameter

q\0. The metric potentials A and B tend to zero as T2. The

tilted angle is constant, and one of the heat conduction

vectors is time dependent. In this case, it is observed that

the spatial volume, pressure, energy density, mean gener-

alized Hubble parameter, directional Hubble’s and expan-

sion scalar are functions of cosmic time. All these

parameters tend to zero as cosmic time tends to infinity

except the spatial volume. Tilted angle in all cases is

independent of cosmic time. Figure 7a and b shows vari-

ation of pressure and energy density with respect to cosmic

time for d1 ¼ 2:5 with varying n ¼ 2; 2:1; 2:2. It is

observed that both pressure and energy density are

decreasing functions of cosmic time which tend to zero as

T2 ! 1. Also, Fig. 8a and b depicts the variations of the

Hubble parameter and the expansion scalar against the

cosmic time. From these graphs, it is observed that Hubble

parameter and the expansion scalar are decreasing positive

valued functions of cosmic time. These two parameters

tend to zero as T2 ! 1. Hence, in the present case,

expansion in the model decreases with an increase in time

and the expansion stops as T2 ! 1. Figure 9 depicts the

variation of spatial volume. It is observed that spatial

volume in the present case increases with an increase in

cosmic time. Also, V ! 0 as T2 ! 0; hence, the model

obtained here starts expanding with zero volume and that

of V ! 1 as T2 ! 1, which shows that the present model

is expanding with Big Bang singularity at T2 ¼ 0. This

model does not approach to isotropy due to nonzero value

of r
H

� �2
as T2 ! 1. The value of anisotropic parameter

and shear scalar is same as that of previous two cases.

Hence, the model obtained here is expanding, shearing

with anisotropic universe. These results are compatible

with the present observations; also, these results match

with results obtained by Singh [62–64].

6. Conclusion

In this paper, we have studied the evolution of universe

with heat conduction and massless scalar field filled with

perfect fluid. For that we considered tilted plane symmetric

cosmological model. We have obtained the general solu-

tion of the gravitational field equations with the help of

power law relation between the metric potentials and EoS

p ¼ xq; 0�x� 1. Also, some physical parameters of the

model are discussed in three different cases.

From Figs. 3a, 6 and 9, it is observed that at the initial

epoch the spatial volume V of the model is zero and it is

increasing function of cosmic time. Also, V tends to infinity

Fig. 5 Variation of Hubble

parameter and variation of

expansion scalar against cosmic

time for k1 ¼ 2:5; k2 ¼ 3:1;
C ¼ 0:012 with varying

n ¼ 0:015; 0:115; 0:215

Fig. 6 Variation of Hubble parameter and variation of expansion

scalar against cosmic time for k1 ¼ 2:5; k2 ¼ 3:1; C ¼ 0:012

Anisotropic plane symmetric model with massless scalar field



as time tends to infinity and hence the present model is

expanding.

The Hubble parameter and the expansion scalar are two

measure observational parameters in astrophysics and

cosmology which help to analyze the rate of expansion of

the universe as well as the fractional increase in the scale of

the universe in unit time. In all the three cases, Hubble

parameter and the expansion scalar are positive-valued

decreasing functions of cosmic time. From Figs. 3b, 5b and

8b, it is seen that at the beginning expansion rate is faster

and in the late stage this expansion rate slows down. In

other words, the expansion in the model decreases with an

increase in time and the expansion stops as time tends to

infinity.

The interesting and remarkable observation of the pre-

sent paper is that the mean anisotropy parameter Am and

the shear scalar r2 in all the three cases of the model are

same and constant throughout the evolution of the universe,

having nonzero values. Hence, the model obtained here

Fig. 7 Variation of pressure

and variation of energy density

against cosmic time for d1 ¼
2:5 with varying

n ¼ 2; 2:1; 2:2

Fig. 8 Variation of Hubble

parameter and variation of

expansion scalar against cosmic

time for d1 ¼ 2:5 with varying

n ¼ 2; 2:1; 2:2

Fig. 9 Variation of spatial volume against cosmic time with varying

n ¼ 2; 2:1; 2:2
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with different deceleration parameters represents expand-

ing, shearing and anisotropic universe. These results are

compatible with the present observations; also, these

results match with results obtained by Singh [62–64].

These models not approach to isotropy due to nonzero

value of r
H

� �2
as cosmic time tends to infinity. Another

remarkable observation made in the second case is that the

massless scalar field U is a logarithmic function of cosmic

time and hence Big Bang of the universe can be avoided by

introducing scalar field U.

Recent astrophysical observations show that the

observed value of deceleration parameter of the universe is

in the range �1\q� 0 which is q0 � �0:77. In first two

cases for n=2.5, we have obtained q0 ¼ �0:76 which is

consistent with respect to the observed value of DP of the

universe at the present epoch [61]. In these cases q\0 for

n[ 1 and q� �1; 0ð Þ as 0:6� n\1; also, for n[ 1; q\0.

In the third case, q\0 for n[ 1. Hence, the models

obtained here are not only expanding but also accelerating

which represents early stages of evolution of the universe

which is in good agreement with recent observations.
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The main purpose of this paper is to investigate LRS Bianchi type I metric in the
presence of perfect fluid and dark energy. In order to obtain a deterministic solution
of the field equations we have assumed that the two sources of the perfect fluid and

dark energy interact minimally with separate conservation of their energy–momentum
tensors as well EoS parameter of the perfect fluid is assumed to be constant. In addition
to this we have used a special law of variation of Hubble parameter proposed by Berman
that yields constant deceleration parameter. For the two different constant values of
deceleration we have obtained two different cosmological models. The physical behaviors
of both the models have been discussed by using MATLAB.

Keywords: LRS Bianchi type I models; perfect fluid and dark energy; EoS parameter.

1. Introduction

In the modern cosmology the numbers of recent astrophysical observational data
suggest that the present universe is not only expanding but also accelerating and
this accelerating phase of the universe is a recent phenomenon. Therefore, naturally
it is to be assumed that dark energy was insignificant in early evolution of the uni-
verse while it has the dominant contribution at the present accelerating epoch [1–4].
These observations also suggest that a transition of the universe from earlier deceler-
ation phase to the accelerated stage of universe can be due to the domination of dark
energy over other kinds of matter. In order to study the universe, the cosmologists
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have decided to obtain the large scale structure of the universe. In the formation
of the large scale structure of the universe it should have decelerating expansion
in early phase of matter era. Thus the formation of structure in the universe is
supported by decelerating model, also model should have decelerating as well as
accelerating phase of universe to give a precise form for this reasoning [5–7]. The
simplest expanding cosmological models are those which are spatially homogeneous
and isotropic. The evolution of isotropic cosmological models filled with perfect fluid
dark energy has been extensively studied by many researchers. As it is predicted
that the cosmic accelerated expansion of the universe is due to some kind of mat-
ter with negative pressure called the dark energy. The experimental observations
such as cosmic microwave background radiation and large scale structure provide
an indirect proof for the late time accelerated expansion of the universe [8–10]. The
numbers of models have been studied by considering ordinary matter as a perfect
fluid in the universe, but it is not sufficient to describe the dynamics of an accel-
erating phase of universe. This problem motivates the researchers to consider the
models of the universe filled with dark energy along with perfect fluid [11–14]. In
order to explain why the cosmic accelerated expansion of the universe happens,
many candidates have been proposed. The cosmological constant is the prime can-
didate for dark energy even though having two well-known problems such as the fine
tuning and cosmic coincidence. The alternative candidates for the dark energy are
dynamical dark energy scenario. The quintessence, k-essence, chaplygin gas mod-
els, tachyon field, phantom field are some of the examples of dynamical dark energy
models [15–18].

The observational data exhibit that our current Universe has an accelerated
expansion. The concept of dark energy is used to define an accelerated expansion
of the Universe proposed by Einstein’s general relativity. This model successfully
describes the current acceleration of the universe, and fits fine with observational
data [45, 46]. The cosmological models with unbalanced matter equation of state
in the class of equation ω = p

ρ are used, where p is the fluid pressure and ρ its
energy density. As it is well known that the vacuum energy for which ω = −1,
mathematically equivalent to the cosmological constant ∧ is one of the most promi-
nent candidates used by the cosmologists to explain the dark energy component of
the universe [9, 47, 48]. The dark energy represented by minimally coupled scalar
fields called quintessence for which ω > −1 [49, 50], and phantom energy for which
ω < −1 [5, 51]. The equation of state parameter is represented by stiff fluid era
ω = 1, the radiation dominated era ω = −1/3, matter dominated era ω = 0 , transi-
tion era ω = −1/3 and DE dominated era ω = −1 [52, 53]. There are two methods
used to describe this accelerated expansion of the universe. First method is the
dark energy, in the framework of general relativity and second method is to modify
the gravitational theory. The researchers Odintsov et al. [54], Harko et al. [55], Wu
and Yu [56], Myrzakulov [57] and Li et al. [58] have investigated several modified
theories of gravity such as f(R) theory of gravity, f(R, T ) theory of gravity, f(T )
theory of gravity, f(G) theory of gravity, etc.
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In this paper, we have studied LRS Bianchi type model in the presence of perfect
fluid and dark energy with variable EoS parameter for DE component whereas EoS
parameter for perfect fluid is assumed to be constant. In order to obtain the exact
solution of Einstein’s field equations we have assumed a special law of variation of
Hubble’s parameter that yields constant parameter. We have obtained two different
cosmological models by using two different explicit forms of scale factors depending
on the value of constant decelerating parameters. The paper is organized as follows.
In Sec. 2, the metric and the field equations are presented. In Sec. 3, an exact
solution of the field is obtained to get two different models for n = 0 and n �= 0. In
Sec. 4, exponential expansion model I for n = 0 is derived. In Sec. 4.1, geometrical
behavior of the model I for n = 0 is discussed and in Sec. 4.2 some more physical
parameters are also discussed. In Sec. 5, power expansion model II for n �= 0 is
derived. In Sec. 5.1, geometrical behavior of the model II for n �= 0 is discussed and
in Sec. 5.2 some more physical parameters are also discussed. In Sec. 6, results and
discussion are presented. Finally, we have concluded the opinion about the models
in Sec. 7.

2. Metric and the Field Equations

We consider LRS Bianchi type I metric [19–23] in the form given by

ds2 = −dt2 + A2(t)

{
dx2 + dy2 +

(
1 + β

∫
dt

A3

)2

dz2

}
, (1)

where A(t)is a metric potential being a function of cosmic time t and β is positive
constant.

We have selected metric (Eq. (1)) because this is one of the simplest models of an
anisotropic universe which is homogeneous and spatially flat. If we considerβ = 0,
the metric (Eq. (1)) reduces to the Friedmann models with space-sections.

LRS Bianchi type-I metric is the spatially homogeneous and anisotropic flat
universe. FRW universe has the equivalent scale factor for each of the three spa-
tial directions whereas LRS Bianchi type-I metric has dissimilar scale factors. The
singularity of LRS Bianchi type-I metric behaves like Kasnser metric. It has been
studied that a metric filled with matter, the early anisotropy in LRS Bianchi type-
I metric speedily expires away and evolves into a FRW universe. It has simple
mathematical form and motivating because of the capability to clarify the cosmic
evolution of the early universe. Due to its prominence, several authors have explored
LRS Bianchi type-I metric from different aspects.

An anisotropic cosmological model plays an important role in the large scale
structure of the Universe. The various researchers studying on cosmology by using
relativistic cosmological models have not given proper details of explanation to
believe in a regular expansion of the early stages of the Universe. At the present
state of evolution, the Universe is spherically symmetric and the matter dispersal
in it is on the whole isotropic and homogeneous. But at the beginning stages of

2150062-3



February 28, 2021 16:42 WSPC/S0219-8878 IJGMMP-J043 2150062

Y. S. Solanke, D. D. Pawar & V. J. Dagwal

evolution, it could not have such a smoothed out picture because near the big bang
singularity neither the supposition of spherical symmetry nor of isotropy can be
strictly valid. Anisotropy of the cosmic expansion is an important quantity because
it is supposed to be damped out in the course of cosmic evolution but the recent
experimental data and critical arguments support the existence of an anisotropic
phase of the cosmic expansion that approaches an isotropic one. Therefore it makes
sense to consider models of the Universe with an anisotropic background.

In natural units (8πG = 1, c = 1), the Einstein field equations in case of a mix-
ture of perfect fluid and dark energy components are given by

Gij = Rij − 1
2
gijR = −Tij , (2)

where Tij = T
(m)
ij + T

(de)
ij is the overall energy–momentum tensor with T

(m)
ij as the

energy–momentum tensors of the ordinary matter (perfect fluid) and T
(de)
ij as the

energy–momentum tensors of the dark energy components which are, respectively,
given by

T
(m)i
j = diag[−ρ(m), p(m), p(m), p(m)] = diag[−1, ω(m), ω(m), ω(m)]ρ(m), (3)

T
(de)i
j = diag[−ρ(de), p(de), p(de), p(de)] = diag[−1, ω(de), ω(de), ω(de)]ρ(de), (4)

where ρ(m) and p(m) are the energy density and pressure of the perfect fluid com-
ponents respectively whereasρ(de) and p(de) are the corresponding energy density
and pressure of the DE components while ω(m) = p(m)

ρ(m) and ω(de) = p(de)

ρde are the
corresponding EoS parameters.

By assuming the comoving co-ordinate system, field equation (2) with Eqs. (3)
and (4) for the metric (1) turns into

Ȧ2

A2
+

2Ä

A
= −ω(m)ρ(m) − ω(de)ρ(de), (5)

3
Ȧ2

A2
+

2βȦ

A4(1 + β
∫

dt
A3 )

= ρ(m) + ρ(de). (6)

By the equation of law of energy conservation (Bianchi identity) T ij
;j = 0, we have

ρ̇(m) + 3[1 + ω(m)]Hρ(m) + ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0. (7)

3. Solution of the Field Equations

The field equations (5) and (6) involve five unknown variables, ω(de). Therefore, in
order to obtain the deterministic solution of the field equations we require three
more suitable assumptions relating these unknown variables.

According to Pacif and Abdussattar [11], Akarsu and Kilinc [12], Abdussattar
and Prajapati [13], let us first assume that the perfect fluid and DE components
interact minimally. Therefore, equation of conservation of energy (7) can be split
up into two separately additive conserved components which are as follows.
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The energy conservation equation of the perfect fluid T
(m)ij
;j = 0 leads to

ρ̇(m) + 3[1 + ω(m)]Hρ(m) = 0. (8)

Similarly, energy conservation equation of the DE components T
(de)ij
;j = 0 leads to

ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0. (9)

Here, overhead dot represents the differentiation with respect to cosmic time
whereas superscript (m) and (de) stand for perfect fluid (matter) and DE com-
ponents, respectively.

Second, we have assumed that the EoS parameter of the perfect fluid to be a
constant. Thus

ω(m) =
p(m)

ρ(m)
= Constant, (10)

whereas ω(de) has been allowed to be a function of cosmic time. Since the line
element (1) is completely characterized by Hubble parameter H therefore finally,
we have assumed that the mean generalized Hubble parameter H is related to the
scale factor R by the relation [24]

H = lR−n = l

[
A3

(
1 + β

∫
dt

A3

)]−n
3

, (11)

where l > 0 and n ≥ 0 are constants.
As the deceleration parameter q = −1 − Ḣ

H2 , Eq. (11) yields the constant value

q = n − 1. (11a)

The universe with n < 1 corresponds to inflate the universe, whereas the uni-
verse with n > 1 defines decelerating universes. The universe with n = 0 has
non-singular origin while the universe with n �= 0 has singular origin. However, the
present observations of SN Ia and CMBR favor accelerating models, i.e. q < 0. An
arresting chance is that all the known cosmological models of Brans–Dicke theory
with flat space-times unsurprisingly render a constant deceleration parameter are
presented by Johri and Desikan [36]. Already such types of relations (Eq. (11)) for
different space-times have been presented by Berman and Gomide [28]; Pradhan
et al. [29]; Singh and Beesham [37]. Several authors have investigated the solu-
tions of Einstein’s equations using Berman’s law in unlike contexts of GR such
as Berman [38, 39]; Beesham [40, 41]. A number of authors like as Pradhanet et
al. [42], Singh and Desikan [43], Singh and Singh [44] have also been used this law
in cosmological models in alternative and modified theories of gravity. All these
referred works were carried out in homogenous and isotropic space-times.

Now, we discuss the dark energy cosmological model for n = 0 and n �= 0 by
using Eq. (11) in the following two respective sections.
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4. DE Cosmological Model-I for n = 0

Comparing Eq. (11) with the definition H = Ṙ
R and integrating, we get

R(t) = k1e
lt, l > 0, (12)

where k1 is constant of integration.
Berman’s law is a generalization of the de Sitter and power-law expansions.
The average scale factor for n = 0 is represented by 2D graph in Fig. 1. The

average scale factor rises monotonically with respect to cosmic time t and the
universe expands with acceleration for large values of the average scale factor. When
t → 0, the average scale factor is constant. The average scale factor diverges when
t → ∞. The average scale factor is performing like exponential expansion. This
outcome decides with the studies of Berman and Gomide [28]; Pradhan et al. [29];
Dagwal and Pawar [22].

From given metric (1) the overall average scale factor R is defined as

R(t) =
[
A3

(
1 + β

∫
dt

A3

)] 1
3

. (13)

After little manipulations with Eqs. (12) (3.1.1) and (13) (3.1.2), we get

A(t) = exp{lt + k0e
−3lt} (14)

and (
1 + β

∫
dt

A3

)
= k exp{−3k0e

−3lt}, (15)

where

k = k3
1 and k0 =

β

9kl
. (16)

Fig. 1. Behavior of average scale factor R(t) versus cosmic time t(Gyr) with k1 = 0.1 and different
value of l.
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Thus our required cosmological model for the given metric (1) takes the form

ds2 = −dt2 + {exp 2[lt + k0e
−3lt]}[dx2 + dy2] + k2{exp 2[lt − 2k0e

−3lt]}dz2.

(17)

4.1. Geometrical behavior of the model I (17)

The directional Hubble parameters for the model along x−, y− and z-axis are,
respectively, given by

Hx = Hy = l(1 − 3k0e
−3lt) and Hz = l(1 + 6k0e

−3lt). (18)

Thus the mean generalized Hubble parameter for the model found to be

H =
1
3
(Hx + Hy + Hz) = l = constant. (19)

The mean anisotropy parameter Δ is defined and takes the value

Δ =
1
3

3∑
i=1

(
Hi − H

H

)2

= 18k2
0e

−6lt. (20)

The mean anisotropy parameter for n = 0 is represented by 3D graph in Fig. 2.
The mean anisotropy parameter decreases monotonically with respect to cosmic
time and tends to a constant value in the large-time limit. When t → 0, the mean
anisotropy parameter is constant. It is zero, when t → ∞. Also, the mean anisotropy
parameter dominates the physical sources in the sufficiently early times of the Uni-
verse.

The spatial volume of the required model is obtained as

V = A3

(
1 + β

∫
dt

A3

)
= k

1
3 elt. (21)

Fig. 2. Behavior of anisotropy parameter versus cosmic time t(Gyr) and l with k0 = β
9kl

, β = 0.5
and k = 0.1.

2150062-7



February 28, 2021 16:42 WSPC/S0219-8878 IJGMMP-J043 2150062

Y. S. Solanke, D. D. Pawar & V. J. Dagwal

Fig. 3. Behavior of spatial volume versus cosmic time t(Gyr) with k = 0.1 and different value of l.

The spatial volume for n = 0 is represented by 2D graph in Fig. 3. The spatial
volume rises monotonically with respect to cosmic time t. When t → 0, spatial
volume is constant. The spatial volume diverges when t → ∞.

Similarly, shear scalar as well as scalar expansion of the model, respectively,
given by

σ2 = 54k0l
2e−6lt (22)

and

θ = 3H = 3l = constant. (23)

The shear scalar for n = 0 is represented by 3D graph in Fig. 4. The shear scalar
decreases monotonically with respect to cosmic time and tends to a constant value
in the large-time limit. When t → 0, shear scalar is constant. The shear scalar is
zero when t → ∞.

The value of the constant deceleration parameter for this model is found to be

q = −RR̈

Ṙ2
= −1. (24)

4.2. Some physical parameters for the model I (17)

The energy density of the perfect fluid by assuming its EoS parameter ω(m) to be
constant with the help of Eqs. (8), (14) and (23) is given by

ρ(m) = k2e
−3[1+ω(m)]lt, (25)

where k2 being constant of integration.
The energy density of the perfect fluid for n = 0 versus cosmic time t is shown

in Fig. 5 by setting the values k2 = 0.9, ω(m) = 1 and different value of l. The
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Fig. 4. Behavior of shear scalar versus cosmic time t(Gyr) and l with k0 = β
9kl

, β = 0.5 and
k = 0.1.

Fig. 5. Behavior of energy density of the perfect fluid versus cosmic time t(Gyr) with k2 =
0.9, ω(m) = 1 and different value of l.

energy density decreases monotonically with respect to cosmic time tand tends to
a constant value in the large-time limit. The energy density of the perfect fluid
is constant for small value of cosmic time t. The energy density of the perfect
fluid is zero for big value of cosmic time t. Figure 6 represents the variation of the
energy density of the perfect fluid against cosmic time t with k2 = 0.9, l = 0.01 and
different value of ω(m). The energy density of the perfect fluid for dust universe,
radiation universe, hard universe and Zel’dovich universe decreases monotonically
with respect to cosmic time t and tends to a constant value in the large-time limit.
This result agrees with the studies of Saha [30, 31]; Singh and Chaubey [32].
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Fig. 6. Behavior of energy density of the perfect fluid versus cosmic time t(Gyr) with k2 = 0.9, l =
0.01 and different value of ω(m).

Fig. 7. Behavior of energy density of the DE versus cosmic time t(Gyr) with k0 = β
9kl

, β = 0.5, k =

0.1, k2 = −0.9, ω(m) = 1 and different value of l.

The energy density of the DE component by using Eq. (6) with Eqs. (14), (15)
and (25) is found to be

ρ(de) = 3l2(1 − 9k2
0e

−6lt) − k2e
−3[1+ω(m)]lt. (26)

The profile of the energy density of the DE for n = 0 versus cosmic time t is
shown in Fig. 7 by setting the values k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, ω(m) = 1
and different value of l. The energy density of the DE decreases monotonically with
respect to cosmic time tand tends to a constant value in the large-time limit. The
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Fig. 8. Behavior of energy density of the DE versus cosmic time t(Gyr) with k0 = β
9kl

, β = 0.5, k =

0.1, k2 = −0.9, l = 0.01 and different value of ω(m).

energy density of the perfect fluid is constant for small value of cosmic time t.
The energy density of the DE is zero for big value of cosmic time t. Figure 8
represents the variation of the energy density of the DE against cosmic time t with
k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01 and different value of ω(m). The
energy density of the DE for dust universe, radiation universe, hard universe and
Zel’dovich universe decreases monotonically with respect to cosmic time t and tends

Fig. 9. Behavior of EoS parameter for the DE versus cosmic time t(Gyr) with k0 = β
9kl

, β =

0.5, k = 0.1, k2 = −0.9, ω(m) = 1 and different value of l.
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Fig. 10. Behavior of EoS parameter for the DE versus cosmic time t(Gyr) with k0 = β
9kl

, β =

0.5, k = 0.1, k2 = −0.9, l = 0.01 and different value of ω(m).

to a constant value in the large-time limit. This result agrees with the studies of
Saha [30, 31]; Singh and Chaubey [32].

Similarly, Eq. (5) by using Eqs. (14), (15), (25) and (26) gives EoS parameter
for the DE component as

ω(de) = −{3l2(1 + 9k2
0e

−6lt) + k2ω
(m)e−3[1+ω(m)]lt}

{3l2(1 − 9k2
0e

−6lt) − k2e−3[1+ω(m)]lt} , (27)

The behavior of EoS parameter for the DE for n = 0 versus cosmic time t is
shown in Fig. 9.

Figure 10 represents the EoS parameter of the DE for n = 0 against cosmic time
t with k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01 and different value of ω(m).
The profile of EoS parameter of the DE for dust universe, radiation universe, hard
universe and Zel’dovich universe is discussed in Fig. 10. This result agrees with the
studies of Saha [30, 31]; Singh and Chaubey [32].

5. DE Cosmological Models II for n �= 0

Comparing Eq. (11) with the definition H = Ṙ
R and integrating we get

R(t) = (nlt + c1)
1
n , l > 0, (28)

where c1 is constant of integration.
The profile of the average scale factor for n �= 0 versus cosmic time t is shown

in Fig. 11 by setting the values c1 = 0.1, n = 0.5 and different value of l. The
average scale factor for n �= 0 increases monotonically with respect to cosmic time
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Fig. 11. Behavior of average scale factor R(t) versus cosmic time t(Gyr) with c1 = 0.1, n = 0.5
and different value of l.

t and the universe expands with acceleration for large values of the average scale
factor. When t → 0, the average scale factor for n �= 0 is constant. The average
scale factor for n �= 0 diverges when t → ∞ . The average scale factor is performing
like exponential expansion. This result agrees with the studies of Pacif et al. [6];
Berman and Gomide [28]; Pradhan etal. [29]; Dagwal and Pawar [22].

From equation of a given metric (1) the overall average scale factor R is
defined as

R(T ) =
[
A3

(
1 + β

∫
dT

A3

)] 1
3

. (29)

After little manipulation with Eqs. (28) and (29), we get

A(T ) = T
1
n exp

{
β

3(3 − n)l
T

(n−3)
n

}
(30)

and (
1 + β

∫
dT

A3

)
= exp

{
β

(n − 3)l
T

(n−3)
n

}
, (31)

where, for the sake of simplicity, we have chosen

T = nlt + c1. (32)

Thus from Eqs. (28) and (32) the average scale factor of this model takes the form

R = T
1
n . (33)
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Thus our required cosmological model for the metric (1) becomes

ds2 =
( −1

n2l2

)
dT 2 +

{
T

2
n exp

2β

3(3 − n)l
T

(n−3)
n

}

×
[
dx2 + dy2 +

{
exp

2β

(n − 3)l
T

(n−3)
3

}
dz2

]
. (34)

5.1. Geometrical behavior of the model II (34)

The directional Hubble parameters for the model along x-, y- and z- axis are,
respectively, given by

Hx = Hy =
Ȧ

A
=

1
nT

− β

3nlT
3
n

and

Hz =
d

dT [A(T )(1 + β
∫

dT
A3 )]

A(T )(1 + β
∫

dT
A3 )

=
1

nT
+

2β

3nlT
3
n

. (35)

Thus, the mean generalized Hubble parameter for the model is

H =
1
3
(Hx + Hy + Hz) =

1
nT

. (36)

The Hubble parameter for n �= 0 against cosmic time t and l is represented by
3D graph in Fig. 12 by locating the values c1 = 0.1, n = 0.5. When t → 0, the
Hubble parameter for n �= 0 is constant.

The Hubble parameter for n �= 0 vanishes at t → ∞. The Hubble parameter
diverges when t → − c1

nl . The Hubble parameter has big rip singularity at t → − c1
nl .

It has big bang singularity when t → ∞. The intermediate phase is between big

Fig. 12. Behavior of Hubble parameter versus cosmic time t(Gyr) and l with c1 = 0.1, n = 0.5.
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bang and big rip singularity. The Hubble parameter starts with big bang and ends
with big rip singularity. This result agrees with the studies of Dagwal [21]; Berman
and Gomide [28]; Pradhan et al. [29]; Sahoo et al. [33]; Dagwal et al. [34].

The mean anisotropy parameter Δ1 of the expansion for the model is

Δ1 =
1
3

3∑
i=1

(
Hi − H

H

)2

=
2β2

9l2T
2(3−n)

n

. (37)

The mean anisotropy parameter for n �= 0 against cosmic time t and l is repre-
sented by 3D graph in Fig. 13 by locating the values n = 0.5, β = 0.5 and c1 = 0.1.
The mean anisotropy parameter for n �= 0 has big rip singularity when t → − c1

nl and
big bang singularity when t → ∞. When n → 3, the mean anisotropy parameter is
constant.

The spatial volume V of the model is found to be

V = A

(
1 + β

∫
dT

A3

) 1
3

= T
1
n . (38)

The spatial volume for n �= 0 against cosmic time t is shown in Fig. 14 by
locating the values c1 = 0.1, n = 0.5 and different value of l. The spatial volume for
n �= 0 increases monotonically with respect to cosmic time t. When t → 0, spatial
volume is constant. The spatial volume diverges when t → ∞.

Similarly shear scalar σ2 and scalar expansion θ are, respectively, found to be

σ2 =
2β2

3n2l2T
6
n

and θ = 3H =
3

nT
. (39)

The shear scalar for n �= 0 against cosmic time t and l is represented by 3D
graph in Fig. 15 by setting the values n = 0.5, β = 0.5 and c1 = 0.1. The shear

Fig. 13. Behavior of anisotropy parameter versus cosmic time t(Gyr) and l with n = 0.5, β = 0.5
and c1 = 0.1.
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Fig. 14. Behavior of spatial volume versus cosmic time t(Gyr) with c1 = 0.1, n = 0.5 and different
value of l.

Fig. 15. Behavior of shear scalar versus cosmic time t(Gyr) and l with n = 0.5, β = 0.5 and
c1 = 0.1.

scalar for n �= 0 has big rip singularity at t → − c1
nl . It has big bang singularity at

t → ∞. The shear scalar for n �= 0 starts with big bang singularity and ends with
big rip.

The value of the deceleration parameter for this model is obtained as

q = −RR̈

Ṙ2
= n − 1. (40)
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5.2. Some more physical parameters of the model II (34)

As per our proposed assumption EoS parameter ω(m) of perfect fluid being constant
energy density for the perfect fluid by using Eq. (8) with the help of Eqs. (30) and
(31) is given by

ρ(m) = c2T
−3[1+ω(m)]

n , (41)

where c2 being constant of integration.
The energy density of the perfect fluid for n �= 0 versus cosmic time t is presented

in Fig. 16 by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1 and different
value of l. The energy density of the perfect fluid for n �= 0 decreases monotonically
with respect to cosmic time t and tends to a constant value in the large-time limit.
The energy density of the perfect fluid for n �= 0 is constant at beginning of the
Universe. The energy density of the perfect fluid for n �= 0 is disappearing for large
value of the Universe. The energy density of the perfect fluid for n �= 0 has big rip
singularity when and big bang singularity when t → ∞. It starts with big bang
singularity and ends with big rip. The energy density of the perfect fluid for n �= 0
has intermediate phase between big bang and big rip singularity. This result agrees
with the studies of Dagwal [21]; Berman and Gomide [28]; Pradhanet. et al. [29];
Sahoo et al. [33]; Dagwal et al. [34]; Kumar and Akarsu [35]. Figure 17 represents
the variation of the energy density of the perfect fluid for n �= 0 against cosmic time
t with c1 = 0.1, c2 = 0.3, n = 3, l = 0.01 and different value of . The energy density
of the perfect fluid for n �= 0, dust universe, radiation universe, hard universe and
Zel’dovich universe decreases monotonically with respect to cosmic time t and tends
to a constant value in the large-time limit. This result agrees with the studies of
Saha [30, 31]; Singh and Chaubey [32]; Kumar and Akarsu [35].

Fig. 16. Behavior of energy density of the perfect fluid versus cosmic time t(Gyr) with c1 =
0.1, c2 = 0.3, n = 3, ω(m) = 1 and different value of l.
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Fig. 17. Behavior of energy density of the perfect fluid versus cosmic time t(Gyr) with c1 =
0.1, c2 = 0.3, n = 3, l = 0.01 and different value of ω(m).

Equation (6) with Eqs. (30), (31) and (41) gives energy density of the DE
component for the model (34) as

ρ(de) =
(

1 − 2nl

3n2l2

)
β2

T
6
n

+
2(nl − 1)β

n2lT
(n+3)

n

+
3

n2T 2
− c2

T
3[1+ω(m)]

n

, (42)

The energy density of the DE for n �= 0 versus cosmic time t is presented
in Fig. 18 by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1, β = 0.5
and different value of l. The energy density of the DE for n �= 0 is constant at

Fig. 18. Behavior of energy density of the DE versus cosmic time t(Gyr) with c1 = 0.1, c2 =
0.3, n = 3, ω(m) = 1, β = 0.5 and different value of l.
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Fig. 19. Behavior of energy density of the DE versus cosmic time t(Gyr) with c1 = 0.1, c2 =
0.3, n = 3, l = 0.91, β = 0.5 and different value of ω(m).

beginning of the Universe. The energy density of the DE for n �= 0 is disappearing
for large value of the Universe. The energy density of the DE for n �= 0 has big rip
singularity when t → − c1

nl and big bang singularity when t → ∞. It starts with big
bang singularity and ends with big rip. The energy density of the DE for n �= 0 has
intermediate phase between big bang and big rip singularity. Figure 19 represents
the variation of the energy density of the DE for n �= 0 against cosmic time t with
c1 = 0.1, c2 = 0.3, n = 3, l = 0.91, β = 0.5 and different value of ω(m). This outcome
approves with the studies of Dagwal [21]; Sahoo et al. [33]; Dagwal et al. [34]. The
energy density of the DE for n �= 0, dust universe ω(m) = 0, radiation universe
ω(m) = 1/3, hard universe ω(m) ∈ (1/3, 1) and Zel’dovich universe ω(m) = 1 have
big bang singularity when t → ∞ and big rip singularity when t → − c1

nl . It has
intermediate phase between big bang and big rip singularity. This result agrees with
the studies of Berman and Gomide [28]; Pradhan et al. [29]; Saha [30, 31]; Singh
and Chaubey [32]; Kumar and Akarsu [35].

Similarly, Eq. (5) with Eqs. (30), (31), (41) and (42) gives EoS parameter of DE
component as

ω(de) = − 1
ρ(de)

{
(3 − 2n)

n2T 2
+

β2

3n2l2T
6
n

+
c2ω

(m)

T
3[1+ω(m)]

n

}
, (43)

where ρ(de) is given by Eq. (42).
The behavior of EoS parameter for the DE for n �= 0 versus cosmic time t is

shown in Fig. 20 by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1, β = 0.5
and different value of l. Figure 21 represents the EoS parameter of the DE for
n �= 0 against cosmic time t with k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01
and different value of ω(m). The profile of EoS parameter of the DE for n �= 0, dust
universe ω(m) = 0, radiation universe ω(m) = 1/3, hard universe ω(m) ∈ (1/3, 1)
and Zel’dovich universe ω(m) = 1 are discussed in Fig. 21. The EoS parameter of
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Fig. 20. Behavior of EoS parameter of DE versus cosmic time t(Gyr) with c1 = 0.1, c2 = 0.3, n =
3, ω(m) = 1, β = 0.5 and different value of l.

Fig. 21. Behavior of EoS parameter of DE versus cosmic time t(Gyr) with c1 = 0.1, c2 = 0.3, n =
3, l = 0.91, β = 0.5 and different value of ω(m).

the DE for n �= 0positive value, the universe matter dominate phase and it has
negative value, the universe is at the present epoch. The previous real matter later
on changed to the dark energy dominated phase of the models in both accelerating
and decelerating approaches. This result agrees with the studies of Pradhan et
al. [29]; Saha [30, 31]; Singh and Chaubey [32].

6. Results and Discussion

6.1. DE cosmological model-I for n = 0

The directional Hubble parameters Hx = Hy and Hz are finite when the cosmic time
is zero as well as infinity. Thus, the model represents the inflationary era in the early
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universe and the very late time of the universe. The spatial volume of this model is
finite when t = 0 and expands exponentially as t increases and becomes infinitely
large at t = ∞. This shows that universe starts with constant volume and expands
with exponential rate. The shear scalar σ2, the mean anisotropy parameter Δ are
finite at t = 0 and tend to zero as cosmic time tends to infinity. The energy density
ρ(m) of the perfect fluid is constant k2 when cosmic time is zero and decreases
exponentially so as to converge at zero when EoS parameter of the perfect fluid
ω(m) ≥ 0 as per the proposed assumption. But energy density ρ(de) of the DE
component changes slightly when cosmic time is zero and decreases exponentially as
time increases further it converges to nonzero constant 3l2 as well as DE component
isfinite at t = 0 and tends to zero as cosmic time tends to infinity. In the present
model ratio of ρ(de)

ρ(de)+ρ(m) converges to 1 as t increases and this is sufficient to show
that the dark energy dominates the perfect fluid in the inflationary era. The mean
anisotropy parameter of expansion decreases monotonically when time increases
and converges to zero when time is infinite. Also limt→∞ σ2

θ = 0 indicates that
model approach to isotropy for large value of cosmic time. The EoS parameter of
the dark energy exhibits nontrivial behavior of the early time of the universe and
converges to −1 for late time [25]. Thus, when cosmic time t = ∞ EoS parameter
ω(de) = −1. This is the simplest form of dark energy called vacuum energy, which is
mathematically equivalent to the cosmological constant. But in some cosmological
models value of the EoS parameter ω = −1 is rejected so as to get the exact solution
of the field equations [26].

Graphical presentation for model-I:

• The average scale factor for n = 0 is represented by 2D graph in Fig. 1. The
average scale factor rises monotonically with respect to cosmic time t and the
universe expands with acceleration for large values of the average scale factor.
When t → 0, the average scale factor is constant. The average scale factor diverges
when t → ∞. The average scale factor is performing like exponential expansion.
This outcome decides with the studies of Berman and Gomide [28]; Pradhan
et al. [29]; Dagwal and Pawar [22].

• The mean anisotropy parameter for n = 0 is represented by 3D graph in Fig. 2.
The mean anisotropy parameter decreases monotonically with respect to cosmic
time and tends to a constant value in the large-time limit. When t → 0, the
mean anisotropy parameter is constant. It is zero when t → ∞. Also, the mean
anisotropy parameter dominates the physical sources in the sufficiently early
times of the Universe.

• The spatial volume for n = 0 is represented by 2D graph in Fig. 3. The spatial
volume rises monotonically with respect to cosmic time t. When t → 0, spatial
volume is constant. The spatial volume diverges when t → ∞.

• The shear scalar for n = 0 is represented by 3D graph in Fig. 4. The shear scalar
decreases monotonically with respect to cosmic time and tends to a constant
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value in the large-time limit. When t → 0, shear scalar is constant. The shear
scalar is zero when t → ∞.

• The energy density of the perfect fluid for n = 0 versus cosmic time t is shown
in Fig. 5 by setting the values k2 = 0.9, ω(m) = 1 and different value of l. The
energy density decreases monotonically with respect to cosmic time t and tends to
a constant value in the large-time limit. The energy density of the perfect fluid is
constant for small value of cosmic time t. The energy density of the perfect fluid is
zero for big value of cosmic time t. Figure 6 represents the variation of the energy
density of the perfect fluid against cosmic time t with k2 = 0.9, l = 0.01 and
different value of ω(m). The energy density of the perfect fluid for dust universe,
radiation universe, hard universe and Zel’dovich universe decreases monotonically
with respect to cosmic time t and tends to a constant value in the large-time limit.
This result agrees with the studies of Saha [30, 31]; Singh and Chaubey [32].

• The profile of the energy density of the DE for n = 0 versus cosmic time t is shown
in Fig. 7 by setting the values k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, ω(m) = 1
and different value of l. The energy density of the DE decreases monotonically
with respect to cosmic time t and tends to a constant value in the large-time
limit. The energy density of the perfect fluid is constant for small value of cosmic
time t. The energy density of the DE is zero for big value of cosmic time t.
Figure 8 represents the variation of the energy density of the DE against cosmic
time t with k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01 and different value of
ω(m). The energy density of the DE for dust universe, radiation universe, hard
universe and Zel’dovich universe decreases monotonically with respect to cosmic
time tand tends to a constant value in the large-time limit. This result agrees
with the studies of Saha [30, 31]; Singh and Chaubey [32].

• The behavior of EoS parameter for the DE for n = 0 versus cosmic time t is
shown in Fig. 9. Figure 10 represents the EoS parameter of the DE for n =0
against cosmic time t withk0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01 and
different value of ω(m). The profile of EoS parameter of the DE for dust universe,
radiation universe, hard universe and Zel’dovich universe is discussed in Fig. 10.
This result agrees with the studies of Saha [30, 31]; Singh and Chaubey [32].

6.2. DE cosmological models-II for n �= 0

The directional Hubble parameters Hx = Hy & Hz are infinitely large at T =
0(∵ T = nlt + c1) and becomes null when T = ∞. It is observed that at T = 0, the
spatial volume vanishes while all other parameters diverge. Thus the derived model
starts evolving with zero volume and expands with cosmic time. This singularity
is point type because metric potential A(T ) vanishes at the initial moment. The
mean anisotropy parameter Δ1, the expansion scalar θ and shear scalar σ2 all vanish
when T → ∞, which indicates that universe is expanding with increase in cosmic
time. Also limT→∞ σ2

θ = 0 provided n < 6 which shows that the model approaches
isotropic for large value of cosmic time. According to Collins and Hawking [27]
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all the candidates for homogeneity and isotropizations are satisfied by the present
model. Thus the present model approaches isotropic during the late time of its
evolution.

Graphical presentation for model-II:

• The profile of the average scale factor for n �= 0 versus cosmic time t is shown in
Fig. 11 by setting the values c1 = 0.1, n = 0.5 and different value of l. The average
scale factor for n �= 0 increases monotonically with respect to cosmic time t and
the universe expands with acceleration for large values of the average scale factor.
When t → 0, the average scale factor for n �= 0 is constant. The average scale
factor for n �= 0 diverges when t → ∞. The average scale factor is performing
like exponential expansion. This result agrees with the studies of Pacif et al. [6];
Berman and Gomide [28]; Pradhan et al. [29]; Dagwal and Pawar [22].

• The Hubble parameter for n �= 0 against cosmic time t and l is represented by
3D graph in Fig. 12 by locating the values c1 = 0.1, n = 0.5. When t → 0,
the Hubble parameter for n �= 0 is constant. The Hubble parameter for n �= 0
vanishes at t → ∞. The Hubble parameter diverges when t → − c1

nl . The Hubble
parameter has big rip singularity at t → − c1

nl . It has big bang singularity when
t → ∞. The intermediate phase is between big bang and big rip singularity. The
Hubble parameter starts with big bang and ends with big rip singularity. This
result agrees with the studies of Dagwal [21]; Berman and Gomide [28]; Pradhan
et al. [29]; Sahoo et al. [33]; Dagwal et al. [34].

• The mean anisotropy parameter for n �= 0 against cosmic time t and l is rep-
resented by 3D graph in Fig. 13 by locating the values n = 0.5, β = 0.5 and
c1 = 0.1. The mean anisotropy parameter for n �= 0 has big rip singularity
when t → − c1

nl and big bang singularity when t → ∞. When n → 3, the mean
anisotropy parameter is constant.

• The spatial volume for n �= 0against cosmic time t is shown in Fig. 14 by locating
the values c1 = 0.1, n = 0.5 and different value of l. The spatial volume for n �= 0
increases monotonically with respect to cosmic time t. When t → 0, spatial
volume is constant. The spatial volume diverges when t → ∞.

• The shear scalar for n �= 0 against cosmic time t and l is represented by 3D graph
in Fig. 15 by setting the values n = 0.5, β = 0.5 and c1 = 0.1. The shear scalar for
n �= 0 has big rip singularity at t → − c1

nl . It has big bang singularity at t → ∞.
The shear scalar for n �= 0 starts with big bang singularity and endswith big rip.

• The energy density of the perfect fluid for n �= 0versus cosmic time t is presented
in Fig. 16 by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1 and different
value of l. The energy density of the perfect fluid for n �= 0 decreases monotoni-
cally with respect to cosmic time tand tends to a constant value in the large-time
limit. The energy density of the perfect fluid for n �= 0 is constant at beginning
of the Universe. The energy density of the perfect fluid for n �= 0 is disappearing
for large value of the Universe. The energy density of the perfect fluid for n �= 0
has big rip singularity when t → − c1

nl and big bang singularity when t → ∞.
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It starts with big bang singularity and ends with big rip. The energy density
of the perfect fluid for n �= 0 has intermediate phase between big bang and big
rip singularity. This result agrees with the studies of Dagwal [21]; Berman and
Gomide [28]; Pradhan et al. [29]; Sahoo et al. [33]; Dagwal et al. [34]; Kumar and
Akarsu [35]. Figure 17 represents the variation of the energy density of the per-
fect fluid for n �= 0 against cosmic time t with c1 = 0.1, c2 = 0.3, n = 3, l = 0.01
and different value of ω(m). The energy density of the perfect fluid for n �= 0,
dust universe, radiation universe, hard universe and Zel’dovich universe decreases
monotonically with respect to cosmic time t and tends to a constant value in the
large-time limit. This result agrees with the studies of Saha [30, 31]; Singh and
Chaubey [32]; Kumar and Akarsu [35].

• The energy density of the DE for n �= 0 versus cosmic time t is presented in Fig. 18
by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1, β = 0.5 and different
value of l. The energy density of the DE for n �= 0 is constant at beginning
of the Universe. The energy density of the DE for n �= 0 is disappearing for
large value of the Universe. The energy density of the DE for n �= 0 has big
rip singularity when t → − c1

nl and big bang singularity when t → ∞. It starts
with big bang singularity and ends with big rip. The energy density of the DE
for n �= 0 has intermediate phase between big bang and big rip singularity.
Figure 19 represents the variation of the energy density of the DE for n �= 0
against cosmic time t with c1 = 0.1, c2 = 0.3, n = 3, l = 0.91, β = 0.5 and
different value of ω(m). This outcome approves with the studies of Dagwal [21];
Sahoo et al. [33]; Dagwal et al. [34]. The energy density of the DE for n �= 0, dust
universe ω(m) = 0, radiation universe ω(m) = 1/3, hard universe ω(m) ∈ (1/3, 1)
and Zel’dovich universe ω(m) = 1 have big bang singularity when t → ∞ and big
rip singularity when t → − c1

nl . It has intermediate phase between big bang and
big rip singularity. This result agrees with the studies of Berman and Gomide
[28]; Pradhan et al. [29]; Saha [30, 31]; Singh and Chaubey [32]; Kumar and
Akarsu [35].

• The behavior of EoS parameter for the DE for n �= 0 versus cosmic time t is
shown in Fig. 20 by setting the values c1 = 0.1, c2 = 0.3, n = 3, ω(m) = 1, β = 0.5
and different value of l. Figure 21 represents the EoS parameter of the DE for
n �= 0 against cosmic time t with k0 = β

9kl , β = 0.5, k = 0.1, k2 = −0.9, l = 0.01
and different value ofω(m). The profile of EoS parameter of the DE for n �= 0, dust
universe ω(m) = 0, radiation universe ω(m) = 1/3, hard universe ω(m) ∈ (1/3, 1)
and Zel’dovich universe ω(m) = 1 are discussed in Fig. 21. The EoS parameter
of the DE for n �= 0 positive value, the universe matter dominate phase and it
has negative value, the universe is at the present epoch. The previous real matter
later on changed to the dark energy dominated phase of the models in both
accelerating and decelerating approaches. This result agrees with the studies of
Pradhan et al. [29]; Saha [30, 31]; Singh and Chaubey [32].

2150062-24



February 28, 2021 16:42 WSPC/S0219-8878 IJGMMP-J043 2150062

Accelerating dark energy universe with LRS Bianchi type-I space-time

7. Conclusion

In this paper, we have investigated accelerating LRS Bianchi type-I dark energy
cosmological model for n = 0 and n �= 0. As we have defined the Hubble’s parameter
in Eq. (11) it gives rise to two types of cosmological models depending on the nature
of the value of constant deceleration parameter whether it is positive or negative.
The first form of the universe having negative value of deceleration parameter shows
the exponential expansion of the universe while second form of the universe having
positive value of deceleration parameter shows the power law expansion of the
universe. For the exponential expansion model all the parameters Hx,Hy, Hz, Δ, σ2

are constant at t = 0. As t → ∞ the EoS parameter of the DE component is −1,
i.e. ω(de) = −1 which may be considered as vacuum energy density. Obviously, it
is equivalent to cosmological constant and it is important to note that this class of
solution is consistent with the recent observations of the supernova Ia [1–4]. For the
power law expansion model Hx, Hy, Hz, Δ1, σ

2, θ all these parameters are infinitely
very large at initial moment and decrease with increase in time and vanish at large
value of cosmic time.

Finally, we conclude that there is no singularity in dark energy cosmological
model-I for n = 0 but in dark energy cosmological model-II for n �= 0 we have big
bang, big rip and point type singularity [59]. This result agrees with the studies
of Ashtekar and Singh [60]; Bojowald [61]; Singh [62]; Shamir [63]; Pradhan and
Amirhashchi [64]; Bali and Kumawat [65], etc. Model-II has intermediate phase
between big bang and big rip singularity. In both model-I and II, it is investigated
that, in early stage, the EoS parameter ω is positive, i.e. the universe is matter
dominated in early stage but in late time, the universe is evolving with negative
values, i.e. the present epoch. Thus our DE models represent realistic models.
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ABSTRACT 

The present paper reports the comparison of free length thermodynamically and acoustically of alpha 

alumina (α-Al2O3) nano suspension in ethanol base fluid. α-Al2O3 nanoparticles were synthesized 

through alkoxide route using sol-gel method. Intermolecular free length has been calculated by thermo 

acoustical method at different temperatures over the entire range of concentrations and compared with 

the valued obtained from well established thermodynamic method. The ultrasonic velocity 

measurement at 4 MHz with an interferometric technique has been made on alpha alumina (α-Al2O3) 

nano suspension in ethanol base fluid. Measurement was taken for the density. The intermolecular free 

length was calculated from the velocity and density measurements. Free length is related with the 

surface of nanoparticles and nanoparticle surfactant interactions and help for the study of thermo 

acoustic and thermodynamic properties of nanosuspension.   

Keywords : α-Al2O3, Ethanol, Free Length, Nanosuspension 

I. INTRODUCTION 

Extensive use of free length has been made to study the 

attraction and repulsion forces between the 

nanoparticles in nanosuspension. Thermo acoustically 

free length of nanoparticles in nanosuspension is given 

by, Lf = K (βa)1/2 = K/Uρ1/2 

 

Where βa, U and ρ respectively the adiabatic 

compressibility, ultrasonic velocity and density of 

nanoparticles in suspended medium. The constant K is 

called Jacobson’s constant, which depends on 

temperature. Jacobson determined the value of K 

empirically between 0 and 500C.  

Thermodynamically, free length of nanoparticles in 

nanosuspension is given by,  

                               Lf =2Va /A 

Where Va and A represents the available volume and 

the surface area of nanoparticles in nanosuspension. 

Also,   

                                Va = V- VO 

                                                A= (36πNVO2)1/3 

 Where N is the Avogadro number VO, and V is the 

molar volume at zero temperature and at temperature 

T, respectively. 

Thermodynamically, the value of Va can be calculated 

using critical temperature from the  following relation,                 

http://www.ijsrst.com/
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Va = V [1- (1- T/Tc)0.3] 

 

Where Tc is the critical temperature.  

The free length has been widely used to interpret the 

interactions between nano suspensions in the base 

fluid.  There has been an increasing interest in the 

study of interactions between the nanoparticles in the 

suspended medium [1-2]. Ultrasonic study of 

nanosuspension has been extensively carried out in 

different branches of science to measure the 

thermodynamic properties to predict the nature of 

interactions of nanosuspension in base fluid [3-4]. 

Ultrasonic velocity and thermo acoustic parameters as 

a function of the concentration in nanoparticle 

suspension are useful in gaining insight into the 

structure and bonding of associated nano complexes 

and other processes in nanosuspension. The materials 

of interest in this study are α-Al2O3 and ethyl alcohol 

(C2H5OH). Thus ethyl alcohol has an OH group that 

might be expected to lead to the formation of a 

hydrogen-bonded nano complex with α-Al2O3 at the 

oxygen site and perhaps electrostatic bonding at the 

other sites. These types of nanosuspension are of 

interest to organic chemists who want to know about 

the type of bond and the number of each kind of 

nanoparticles in the α-Al2O3 nano complex. 

 

In this work, measurements of free length acoustically 

and thermodynamically are functions of concentration 

and temperatures are reported. The data presented may 

stimulate other researchers to consider the interactions 

of nanoparticles in nanosuspension. Such data are 

valuable in building a core of basic information about 

nanosuspension. The method used in the measurement 

of ultrasonic velocity at 4 MHz was the interferometric 

method over the temperature range 25-400C.    

 

The main objective of present work is to contribute the 

free length of α-Al2O3 nanosuspension properties 

database in current literature in order to better 

understand the effects of various parameters such as 

particle size and temperatures. Free length is highly 

dependent on specific surface area of nanoparticle in 

nanosuspension.   

 

II. EXPERIMENTAL AND METHODS 

The test liquid samples used were spectroquality. All 

these samples are of BDH analar grade and were assume 

to be sufficiently pure so that no further purification 

was necessary.  In this study the ultrasonic 

measurements have been made by interferometric 

method at fixed frequency 4 MHz over the entire range 

of concentrations and in the temperature range 25 – 

400C. The velocity of ultrasound thus measured was 

accurate to within 0.01%. The densities were measured 

with an Anton Paar DMA 35 N vibrating tube 

densimeter with a ±0.5 × 10-3g/cm3 resolution. The 

temperature of nanosuspension medium was controlled 

to within 0.20C. Nanoparticles of alpha alumina (α-

Al2O3) was prepared by sol-gel method [6-11] from 

Aluminum isopropoxide [Al (OC3H7)3] and aluminum 

nitrate. The average particle size α-Al2O3 has been 

estimated by using Debye-Scherrer formula. The 

average estimate size of α-Al2O3 nano particles is found 

to be 20-30 nm Pawar et.al. The prepared α-Al2O3 nano 

particles were suspended in ethanol.  

 

III. RESULTS AND DISCUSSION 

The intermolecular forces, which in one way or 

another determine the said properties of 

nanosuspension, consist of attractive forces and 

repulsive forces. These forces have opposite directions 

but are numerically equal under given external 

conditions. The attractive forces are dependent on the 

distance between what are called the centres of 

attraction of the nanoparticles, whereas the repulsive 

forces are dependent on the distance between the 

surfaces of the nanoparticles.  Centres of attraction do 

not coincide with the geometrical centre of the 

nanoparticles.  The distances between the surfaces have 

a clear physical significance, and thus lend themselves 
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more easily.  Surface tension, viscosity, thermal 

expansion and molecular association will be related to 

the intermolecular free length.   The acoustic wave 

which was excited in the nano suspended medium is 

momentarily to the intermolecular length. Free length 

is long, ultrasonic velocity has a low value. Its value 

corresponded to the molecular shape Fig.11 contains 

the plot of free length computed acoustically versus 

molar concentration. It shows similar trend as that of 

adiabatic compressibility and reverse trend as that of 

ultrasonic velocity which is in good agreement with 

the theoretical requirement.  

. 

Figure.1 Free length versus molar concentration of α- 

Al2O3 nanosuspension in ethanol 

IV. CONCLUSION 

 

1. The free length computed acoustically and 

thermodynamically shows considerable deviation 

from any linear variation with respect to molar 

concentrations. 

2. Non linear variation of free length versus molar 

concentration is due to Brownian motion of 

nanoparticles in nanosuspension.  

3. Behavior of nanoparticles in ethanol base fluid 

nano suspension dependent on its specific surface 

area.  

4. Free length study of nanoparticles in 

nanosuspension highly useful in understanding 

nature of interactions, internal structure and the 

aggregation behavior. 
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In this work, we have studied LRS Bianchi type I cosmological models in f(R, T ) grav-
ity with tilted observers, where R is the Ricci scalar and T is the trace of the stress

energy tensor. We have explored a tilted model and determined the solutions of the
field equations by assuming special law of variation of Hubble’s parameter, proposed by
Berman (1983) that yields constant deceleration parameter. In this scenario, we have
used the equation of state p = (γ−1)ρ and power law of velocity to describe the different
anisotropic physical models such as Dust Universe, Radiation Universe, Hard Universe
and Zedovich Universe. We have discussed graphical presentation of all parameters of
the derived models with the help of MATLAB. Some physical and geometrical aspects
of the models are also discussed.

Keywords: Tilted models; f(R, T ) theory; equation of state.

1. Introduction

Modern astrophysical observations show that the expansion of the Universe is cur-

rently in an accelerated era. The observational data of supernovae type Ia1,2 and

cosmic microwave background (CMB) have investigated that our Universe is ex-

panding at an increasing rate. The f(R, T ) modified theory of gravity can be used to

investigate some problems of recent interest and may lead to some major variances.

In f(R, T ) modified theory of gravity, the result of cosmic acceleration not only

depends on the geometrical contribution but also depends on matter contents. This

§Corresponding author.
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theory is extension of f(R) theory of gravity including trace of energy-momentum

tensor T . f(R, T ) modified theory of gravity is investigated by Harko et al.
3 Dif-

ferent aspects of f(R) modified theory of gravity that are studied by Houndjo

and Houndjo et al.,4,5 Myrzakulov,6 Pacif et al.7,8 presented irregularity factors in

f(R, T ) theory of gravity. Sahoo et al.
9 calculated anisotropic models in modified

theory of gravity. Tilted model and two fluid models in modified theory of gravity

are discussed by Pawar and Dagwal,10 Dagwal,11 Dagwal et al.
12 Aygün et al.

13

examined geometrical and physical properties of f(R, T ) gravity. Aktaş14,15 stud-

ied higher dimension with dark energy model in f(R, T ) theory of gravity. Aktaş

et al.
16 obtained magnetic field in modified theory of gravity. Pawar and Solanke17

developed LRS Bianchi type I cosmological Universe in f(R, T ) modified theory

of gravity. Dagwal and Pawar18,46 investigated two-fluid sources in f(T ) theory

of gravity. Yousuf40 examined the study of electromagnetic field in f(R, T ) grav-

ity. Yousuf41 has investigated self-gravitating system in modified theory of gravity.

Some dynamical properties of f(G, T ) gravity studied by Yousuf.42

In the tilted model, the fluid velocity vector is not orthogonal to the group

orbits and also its spatially homogeneous, otherwise the Universe is said to be non-

tilted. Tilted cosmological models have been explored by King and Ellis19; Ellis and

King.20 Pawar and Dagwal21; Pawar et al.22,23 presented tilted models for different

gravitational theories. Dagwal and Pawar24,25 discussed the properties of tilted two

fluids models with G and Λ in General Relativity and tilted dark energy. Tilted

models in Brans Dicke theory of gravitation are obtained by Pawar et al.26 Tilted

Universe in tensor theory of gravitation is obtained by Sahu.27 Tilted plane sym-

metric space-time is expressed by Sharif and Tahir.28 Sharif and Majid29 discussed

the physical properties of tilted model in electromagnetic field. Nilsson et al.
30 ex-

amined co-moving models radiation fluid. In tilted model the properties of thermo-

dynamics and hydrodynamics have formulated by Herrera et al.
31 Yousaf et al.32,33

presented tilted model in modified theory of gravity. Dagwal and Pawar34 investi-

gated tilted congruence Universe. Yousuf43 discussed the hydrodynamics properties

of non-comoving model.

The observational data show that our current Universe is accelerating and ex-

panding. By Einstein general theory of relativity, an accelerated expansion of the

Universe is due to negative pressure called dark energy and positive energy den-

sity and therefore has a negative equation of state parameter. The quantity ω(t)

from expressional data have presented by Sahni and Starobinsky,35 Sahni et al.36

have calculated the experimental data conducted to determine this parameter as a

function of cosmological time. Dark energy has been conventionally characterized

by EoS parameter mentioned. The simplest candidate of Dark energy is the vac-

uum energy (ω = −1), which is mathematically corresponding to the cosmological

constant Λ. Yousuf44,45 presented spherically symmetric geometry in Λ-dominated

era and studied the effect of cosmological constant. Ratra and Peebles,37 Caldwell

et al.
38 and Feng et al.

39 discussed EoS parameter, defined by minimally coupled
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scalar fields, are quintessence (ω > −1), phantom energy (ω < −1) and the combi-

nation of quintessence and phantom.

By the motivation of the above work, here we have investigated LRS Bianchi

type I cosmological models in f(R, T ) gravity with tilted observers. We have ex-

plored a tilted model and determined the solutions of the field equations by assum-

ing special law of variation of Hubble’s parameter, proposed by Berman (1983) that

yields constant deceleration parameter. In this scenario, we have used the equation

of state p = (γ− 1)ρ and power law of velocity to describe the different anisotropic

physical models such as Dust Universe, Radiation Universe, Hard Universe and Ze-

dovich Universe. We have discussed graphical presentation of all parameters of the

derived models with the help of MATLAB. Some physical and geometrical aspects

of the models are also discussed.

This paper is organized as follows. Section 2 deals with metric and field equa-

tions. Section 3 deals with some physical and geometrical properties. Section 4 deals

with the types of Universe by using equation of state. Section 5 deals with results

and discussion and concludes in Sec. 6.

2. Metric and Field Equations

We consider the metric in the form

ds2 = dt2 −R2

{

dx2 + dy2 +

(

1 + β

∫

dt

R3

)2

dz2

}

, (1)

where R is functions of t alone.

The field equation in f(R, T ) theory of gravity for the function is given by

f(R, T ) = R+ 2f(T ), (2)

as

Rij −
1

2
Rgij = Tij + 2f ′Tij + [2pf ′(T ) + f(T )]gij , (3)

The energy–momentum tensor as

Tij = (p+ ρ)uiuj − pgij + qiuj + qjui (4)

with

gijuiuj = 1, (5)

qiq
i > 0, qiu

j = 0, (6)

where qi is the heat conduction vector orthogonal to ui, ρ is the energy density,

p is the pressure. The fluid vector ui has the components (R sinhα, 0, 0, coshα)

satisfying Eq. (5) and α is the tilt angle.

The prime denotes differentiation with respect to the argument.
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We choose the function f(T ) as the trace of the stress energy tensor of the

matter so that

f(T ) = λT, (7)

where λ is constant.

The field equations are

R2
4

R2
+ 2

R44

R
= (1 + 2λ)

[

(ρ+ p) sinh2 α+ p+ 2q1
sinhα

R

]

− (ρ− p)λ, (8)

R2
4

R2
+ 2

R44

R
= (1 + 2λ)p− (ρ− p)λ, (9)

3
R2

4

R2
+

2βR4

R4
(

1 + β
∫

dt
R3

)

= −(1 + 2λ)

[

(ρ+ p) cosh2 α− p+ 2q1
sinhα

R

]

− (ρ− p)λ, (10)

(1 + 2λ)

[

(ρ+ p)R sinhα coshα+ q1 coshα+ q1
sinh2 α

coshα

]

= 0. (11)

Here, the index 4 after a field variable denotes the difference with resp. to cosmic

time.

We take equation of state (Eos), which gives

p = (γ − 1)ρ, 1 ≤ γ ≤ 2. (12)

We have calculated the above set of nonlinear equation with the assistance of spe-

cial law of variation of Hubble’s parameter, presented by Berman (1983) that yields

constant deceleration parameter model of Universe. We assumed only constant de-

celeration parameter model defined as

q = −

[

vv44

v24

]

, (13)

where

v =

[

R3

(

1 + β

∫

dt

R3

)]
1
3

(14)

is the overall scalar factor.

The solution of (13) is given by

v = (Kt+ L)
1

1+q (15)

where K and L are integration constants.
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From Eqs. (14) and (15), we get

[

R3

(

1 + β

∫

dt

R3

)]
1
3

= (Kt+ L)
1

1+q . (16)

Solving above equation we get

R = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

. (17)

Metric (1) reduces to the following form:

ds2 = dt2 − (Kt+ L)
2

1+q e
2[ β(1+q)

3K(2−q) ](Kt+L)
q−2
1+q

(dx2 + dy2)

− (Kt+ L)
2

1+q e
−4[ β(1+q)

3K(2−q) ](Kt+L)
q−2
1+q

dz2, (18)

where K = 1.

3. Some Physical and Geometrical Properties

Solving Eqs. (9), (12) and (16), we get

ρ =
1

[(1 + 3λ)(γ − 1)− λ]

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q
1+q

}

. (19)

From Eqs. (12) and (19), we get

p =
(γ − 1)

[(1 + 3λ)(γ − 1)− λ]

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (20)

The tilt angle α, heat conduction vectors qi and flow vectors uifor the Universe (18)

are

coshα =



































































(1 + 2λ)γ













3

(1 + q)2(Kt+ L)2
+

β2

3(Kt + L)
6

1+q

−
2

(1 + q)(Kt+ L)2

−
4β

3(1 + q)(Kt + L)
4+q
1+q













[

β2

3(Kt+ L)
6

1+q

−
1

(1 + q)(Kt+ L)2

]

+
1

2



































































1
2

(21)
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sinhα =







































































2(1 + 2λ)γ













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1 + q)(Kt + L)
4+q
1+q













+











1

(1 + q)(Kt + L)2

−

β2

3(Kt + L)
6

1+q











2









β2

3(Kt + L)
6

1+q −

1

(1 + q)(Kt + L)2















































































1
2

,

(22)

u1 = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

sinhα, (23)

u4 = coshα, (24)

q1 =
e

β(1+q)
3K(2−q)

(Kt+L)
q−2
1+q

sinhα cosh2 α

[(1 + 3λ)(γ − 1)− λ](1 + 2λ)

×

[

2

(1 + q)(Kt+ L)2
−

2β2

3(Kt+ L)
6

1+q

]

. (25)

The scalar expansion, shear scalar, Hubble parameter and spatial volume are,

respectively, given by

θ =
18

(1 + q)(Kt+ L)
, (26)

σ2 =
2β2

3(Kt+ L)
1

1+q

, (27)

H =
6

(1 + q)(Kt+ L)
, (28)

V = (Kt+ L)
3

(1+q) . (29)

The Hubble parameter, scalar expansion, shear scalar and spatial volume are

presented by 2D and 3D graph in Fig. 1. The shear scalar raises monotonous in

the context of the cosmic time and the Hubble parameter and scalar expansion

parameters are vanishing as t → ∞. In 3D graph, Fig. 1 specifies that the shear

scalar is higher than Hubble parameter and scalar expansion.

The density parameter is given by

Ω =
(1 + q)2(Kt+ L)2

108[(1 + 3λ)(γ − 1)− λ]

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (30)
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Fig. 1. Variation of Hubble parameter, scalar of expansion, shear scalar and spatial volume vs.
cosmic time for q = −0.33, A = 0.4, B = 9, β = 0.5.

4. Types of Universe by using Equation of State

(a) Dust Universe: When γ = 1

The pressure and energy density for the model are, respectively, given by

ρ =
1

λ

{

2

(1 + q)(Kt+ L)2
+

4β

3(1 + q)(Kt+ L)
4+q

1+q

−
3

(1 + q)2(Kt+ L)2
−

β2

3(Kt+ L)
6

1+q

}

, (31)

p = 0. (32)

The energy density and pressure are as shown in Fig. 2. The energy density rises

monotonically in the context of the cosmic time and the pressure is vanishing as

t → ∞.
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Fig. 2. Variation of energy density, pressure for q = −0.33, A = −10, B = −10, β = 0.2, λ = −4,
γ = 1.

The tilt angle α, heat conduction vectors qi and flow vectors ui for the Dust

Universe are given by

coshα =























































(1 + 2λ)









3
(1+q)2(Kt+L)2

+ β2

3(Kt+L)
6

1+q

−
2

(1+q)(Kt+L)2

−
4β

3(1+q)(Kt+L)

4+q
1+q









[

β2

3(Kt+L)
6

1+q

−
1

(1+q)(Kt+L)2

] +
1

2























































1
2

, (33)

sinhα =







































































2(1 + 2λ)













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1 + q)(Kt + L)
4+q
1+q













+











1

(1 + q)(Kt + L)2

−

β2

3(Kt + L)
6

1+q











2

[

β2

3(Kt + L)
6

1+q

−

1

(1 + q)(Kt + L)2

]







































































1
2

,

(34)

u1 = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

sinhα, (35)

u4 = coshα, (36)

q1 =
e

β(1+q)
3K(2−q)

(Kt+L)
q−2
1+q

sinhα cosh2 α

λ(1 + 2λ)

[

2β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2

]

. (37)
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The scalar expansion, shear scalar, Hubble parameter and spatial volume are,

respectively, given by

θ =
18

(1 + q)(Kt+ L)
, (38)

σ2 =
2β2

3(Kt+ L)
1

1+q

, (39)

H =
6

(1 + q)(Kt+ L)
, (40)

V = (Kt+ L)
3

(1+q) . (41)

The density parameters

Ω =
−(1 + q)2(Kt+ L)2

108λ

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (42)

The density parameters, as shown in Fig. 3, rises monotonically in the context

of the cosmic time for positive value of λ. The pressure and energy density are

relatively short in terms of cosmic time for negative value of λ.

 

, 10, 10, 0.2, 4 & 4 , 1

l

l

4

Fig. 3. Variation of density parameters vs. cosmic time for q = −0.33, A = −10, B = −10,
β = 0.2, λ = 4, λ = −4r, γ = 1.
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4

a q u

Fig. 4. Variation of energy density, pressure for q = −0.33, A = −10, B = −10, β = 0.2, λ = −4,
γ = 4

3
.

(b) Radiation Universe: When γ = 4

3

The energy density and pressure are, respectively, given by

ρ = 3

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

, (43)

p =

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (44)

The energy density, pressure presented in Fig. 4, increases monotonically with

respect to time.

The tilt angle α, heat conduction vectors qi and flow vectors ui for the Radiation

Universe are, respectively, given by

coshα =



































































(1 + 2λ)













12

(1 + q)2(Kt + L)2
+

4β2

3(Kt + L)
6

1+q

−

8

(1 + q)(Kt + L)2

−

16β

3(1 + q)(Kt + L)
4+q
1+q













[

β2

(Kt + L)
6

1+q

−

3

(1 + q)(Kt + L)2

] +
1

2



































































1
2

, (45)

2050316-10

M
od

. P
hy

s.
 L

et
t. 

A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
11

/0
4/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 30, 2020 15:17 MPLA S0217732320503162 page 11

Study of cosmic models in f(R, T ) gravity with tilted observers

sinhα =



































































8(1 + 2λ)













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1 + q)(Kt + L)
4+q
1+q













+ 3











1

(1 + q)(Kt + L)2

−

β2

3(Kt + L)
6

1+q











6

[

β2

3(Kt + L)
6

1+q

−

1

(1 + q)(Kt + L)2

]



































































1
2

,

(46)

u1 = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

sinhα, (47)

u4 = coshα, (48)

q1 =
3e

β(1+q)
3K(2−q)

(Kt+L)
q−2
1+q

sinhα cosh2 α

(1 + 2λ)

×

[

2

(1 + q)(Kt+ L)2
−

2β2

3(Kt+ L)
6

1+q

]

. (49)

The scalar expansion, shear scalar, Hubble parameter and spatial volume are,

respectively, given by

θ =
18

(1 + q)(Kt+ L)
, (50)

σ2 =
2β2

3(Kt+ L)
1

1+q

, (51)

H =
6

(1 + q)(Kt+ L)
, (52)

V = (Kt+ L)
3

(1+q) . (53)

The density parameter is given by

Ω =
(1 + q)2(Kt+ L)2

36

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (54)

(c) Hard Universe: When
[

γ ∈
(

4

3
, 2

)]

, let γ = 5

3

The energy density and pressure are, respectively, given by

ρ =
3

(2 + 3λ)

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

, (55)

2050316-11

M
od

. P
hy

s.
 L

et
t. 

A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
11

/0
4/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 30, 2020 15:17 MPLA S0217732320503162 page 12

V. J. Dagwal, D. D. Pawar & Y. S. Solanke

 

5

l

l

a q u

Fig. 5. Variation of energy density, pressure for q = −0.33, A = −10, B = −10, β = 0.2, λ = 4,
γ = 5

3
.

p =
2

(2 + 3λ)

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (56)

The energy density, pressure presented in Fig. 5, rises monotonically in the

context of the cosmic time for positive value of λ. The pressure and energy density

are relatively short in terms of cosmic time negative value of λ.

The tilt angle α, heat conduction vectors qi and flow vectors ui for Hard Universe

are, respectively, given as

coshα =



































































5(1 + 2λ)













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2

−

4β

3(1 + q)(Kt + L)
4+q
1+q













[

3β2

(Kt + L)
6

1+q

−

3

(1 + q)(Kt + L)2

] +
1

2



































































1
2

, (57)

sinhα =































































10(1 + 2λ)











3
(1+q)2(Kt+L)2

+
β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1+q)(Kt+L)

4+q
1+q











+ 3









1

(1 + q)(Kt + L)2

−
β2

3(Kt+L)
6

1+q









6

[

β2

3(Kt + L)
6

1+q

−

1

(1 + q)(Kt + L)2

] + 1
2































































1
2

,

(58)
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u1 = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

sinhα, (59)

u4 = coshα, (60)

q1 =
e

β(1+q)
3K(2−q) (Kt+ L)

q−2
1+q sinhα cosh2 α

(2 + 7λ+ 6λ2)

×

[

2

(1 + q)(Kt+ L)2
−

2β2

3(Kt+ L)
6

1+q

]

. (61)

The scalar expansion, shear scalar, Hubble parameter and spatial volume are,

respectively, given by

θ =
18

(1 + q)(Kt+ L)
, (62)

σ2 =
2β2

3(Kt+ L)
1

1+q

, (63)

H =
6

(1 + q)(Kt+ L)
, (64)

V = (Kt+ L)
3

(1+q) . (65)

The density parameter is given by

Ω =
(1 + q)2(Kt+ L)2

36(2 + 3λ)

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (66)

(d) Zeldovich Universe: When γ = 2

The pressure and energy density are given by

ρ = p =
1

(1 + 2λ)

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (67)

The energy density, pressure presented in Fig. 6, rises monotonically in the

context of the cosmic time for positive value of λ. The pressure and energy density

are relatively short in terms of cosmic time for negative value of λ.
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Fig. 6. Variation energy density, pressure for q = −0.33, A = −10, B = −10, β = 0.2, λ = 4,
γ = 2.

The tilt angle α, flow vectors ui and heat conduction vectors qi for Zeldovich

Universe are, respectively, given by

coshα =



































































(1 + 2λ)2













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1 + q)(Kt + L)
4+q
1+q













[

β2

3(Kt + L)
6

1+q

−

1

(1 + q)(Kt + L)2

] +
1

2



































































1
2

, (68)

sinhα =



































































4(1 + 2λ)













3

(1 + q)2(Kt + L)2
+

β2

3(Kt + L)
6

1+q

−

2

(1 + q)(Kt + L)2
−

4β

3(1 + q)(Kt + L)
4+q
1+q













+











1

(1 + q)(Kt + L)2

−

β2

3(Kt + L)
6

1+q











2

[

β2

3(Kt + L)
6

1+q

−

1

(1 + q)(Kt + L)2

]



































































1
2

,

(69)

u1 = (Kt+ L)
1

1+q e
β(1+q)

3K(2−q)
(Kt+L)

q−2
1+q

sinhα, (70)

u4 = coshα, (71)

q1 =
e

β(1+q)
3K(2−q)

(Kt+L)
q−2
1+q

sinhα cosh2 α

(1 + 2λ)2

[

2

(1 + q)(Kt+ L)2
−

2β2

3(Kt+ L)
6

1+q

]

. (72)
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The scalar expansion, shear scalar, Hubble parameter and spatial volume are,

respectively, given by

θ =
18

(1 + q)(Kt+ L)
, (73)

σ2 =
2β2

3(Kt+ L)
1

1+q

, (74)

H =
6

(1 + q)(Kt+ L)
, (75)

V = (Kt+ L)
3

(1+q) . (76)

The density parameter is given by

Ω =
(1 + q)2(Kt+ L)2

108(1 + 2λ)

{

3

(1 + q)2(Kt+ L)2
+

β2

3(Kt+ L)
6

1+q

−
2

(1 + q)(Kt+ L)2
−

4β

3(1 + q)(Kt+ L)
4+q

1+q

}

. (77)

The density parameters for all Universes are presented in Fig. 7. Dust Uni-

verse rises monotonically in the context of the cosmic time; Radiation Universe

is vanishing as t → ∞ whereas Hard Universe and Zeldovich Universe decrease

monotonically with respect time.

 

, 10, 10, 0.2, 4, 1

®¥

, 10, 10, 0.2, 4

( 1) 1 2

1 0

g r

Fig. 7. Variation of density parameters vs. cosmic time for q = −0.33, A = −10, B = −10,
β = 0.2, λ = −4, γ = 1.

The tilt angle for all Universe is presented in Fig. 8. From the Table 1 it is

observed that the value of tilt angle is low in Dust Universe and high in Zeldovich

Universe.
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Fig. 8. Variation of tilt angle vs. cosmic time for q = −0.33, A = 10, B = 10, β = 0.2, λ = 4,
γ = 1, 4

3
, 5

3
, 2.

Table 1. Tilt angle vs. cosmic time for q = −0.33, A = 10, B = 10,
β = 0.2, λ = 4.

Equation of State
Type of Universes p = (γ − 1)ρ, 1 ≤ γ ≤ 2 Tilt angle

Dust γ = 1 → p = 0 4.7488

Radiation γ =
4

3
→ p =

ρ

3
6.2484

Hard γ =
5

3
→

2ρ

3
7.7480

Zeldovich γ = 2 → p = ρ 9.2484

5. Result and Discussion

Dust Universe: For this model, the energy density and pressure are as shown in

Fig. 2. The energy density rises monotonically in the context of the cosmic time

and the pressure is vanishing as t → ∞.

The density parameters, as shown in Fig. 3, rise monotonically in the context

of the cosmic time for positive value of λ. The pressure and energy density are

relatively short in terms of cosmic time for negative value of λ.

Radiation Universe: For this model, the energy density and pressure presented in

Fig. 4 increase monotonically with respect to time.

Hard Universe: For this model, the energy density and pressure presented in Fig. 5

rise monotonically in the context of the cosmic time for positive value of λ. The

pressure and energy density are relatively short in terms of cosmic time negative

value of λ.
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Zeldovich Universe: For this model, the energy density and pressure presented in

Fig. 6 rise monotonically in the context of the cosmic time for positive value of λ.

The pressure and energy density are relatively short in terms of cosmic time for

negative value of λ.

6. Conclusion

We have presented the tilted cosmological model by using equation of state param-

eter in f(R, T ) theory of gravity. We have concluded new idea of f(R, T ) theory

of gravity by using tilted model. We have investigated different types of Universe

with equation of state p = (γ − 1)ρ. We have discussed graphical presentation of

all parameters with the help of MATLAB. In Zeldovich Universe, the value of tilt

angle is higher than the other Universe. Model is accelerating in Dust Universe,

Radiation Universe and Hard Universe, Zeldovich Universe at λ = −4 and λ = 4.

This is a better result of tilted model in f(R, T ) theory of gravity than general

theory of relativity for this spacetime. The value of tilt angle is constant in General

theory of relativity whereas the value of tilt angle is non-constant in f(R, T ) theory

of gravity. So, we conclude that there is no singularity of tilted Universe for this

space time in f(R, T ) theory of gravity.
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15. C. Aktaş, Mod. Phys. Lett. A 34, 1950066 (2019).
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